

Improvement and validation of mid-infrared predictions of milk fatty acid

H. Soyeurt^{1,2,*}, S. McParland³, D.P. Berry³, E. Wall⁴, N. Gengler^{1,2}, F. Dehareng⁵, and P. Dardenne⁵

¹ University of Liège, Gembloux Agro-Bio Tech - GxABT, Gembloux, Belgium
² National Fund for Scientific Research, Brussels, Belgium
³ Teagasc Moorepark Dairy Production Rsearch Centre, Cork, Ireland
⁴ Scottish Agricultural College, Penicuik, UK
⁵ Walloon Agricultural Research Center – CRA-W, Gembloux, Belgium

ADSA – 14th July 2010 – Denver - USA

Fatty Acids

- Generally, 2.5 to 7.0% of fat in bovine milk
- 96% of fat is composed by triglycerides

Langara, 2008

- Saturated (SAT): 70%
- Unsaturated (UNSAT): 30%
 - Monounsaturated (MONO): 25%
 - **Polyunsaturated** (POLY): 5%

Measurement

- Gas chromatography:
 - Major advantage: accuracy
 - Major disadvantages:
 - Expensive reagents
 - Time consuming
 - Skilled staff

Measurement

- Gas chromatography:
 - Major advantage: accuracy
 - Major disadvantages:
 - Expensive reagents
 - Time consuming
 - Skilled staff

Find an alternative method

Measurement

- Gas chromatography:
 - Major advantage: reliability
 - Major disadvantages:
 - Expensive reagents
 - Time consuming
 - Skilled staff
- Mid-InfraRed (MIR) spectrometry:
 - Fast analysis (up to 500 samples/hour)
 - Cheap analysis
 - Used in routine milk recording

Collection of samples

Collection of samples

High variability:

- Collected in Belgium, Ireland and Scotland
- Between March 2005 and August 2009
- From several breeds and cows
- Samples from individual cows and for milk payment

- 6 methods were tested:
 - (1) Partial Least Squares regressions (PLS)

- 6 methods were tested:
 - (1) Partial Least Squares regressions (PLS)
 - (2) PLS + repeatability file:
 - Spectra provided by different spectrometers for the same milk samples

- 6 methods were tested:
 - (1) Partial Least Squares regressions (PLS)
 - (2) PLS + repeatability file (REP)
 - (3) PLS + first derivative applied to the spectra:
 - Correction of baseline drift

- 6 methods were tested:
 - (1) Partial Least Squares regressions (PLS)
 - (2) PLS + repeatability file (REP)
 - (3) PLS + first derivative (DER1)
 - (4) PLS + DER1 + REP

- 6 methods were tested:
 - (1) Partial Least Squares regressions (PLS)
 - (2) PLS + repeatability file (REP)
 - (3) PLS + first derivative (DER1)
 - (4) PLS + DER1 + REP
 - (5) PLS + second derivative (DER2)

- 6 methods were tested:
 - (1) Partial Least Squares regressions (PLS)
 - (2) PLS + repeatability file (REP)
 - (3) PLS + first derivative (DER1)
 - (4) PLS + DER1 + REP
 - (5) PLS + second derivative (DER2)
 - (6) PLS + DER2 + REP

gembloux

^{agro bic}Most Interesting Results

Co	nstituents (g/dl of milk)	Mean	SD	CV	
C4:	0	0.11	0.03	31.27	
C 6	0	0.08	0.02	31.93	
C8:	0	0.05	0.02	34.82	
C1(D:0	0.11	0.04	39.91	
C12	2:0	0.14	0.06	41.17	
C14	4:0	0.45	0.15	32.07	
C14	4:1	0.04	0.02	45.15	
C1	5:0	1.23	0.43	35.02	ы
C1	5:1 cis	0.07	0.03	45.48	
C18	3:0	0.45	0.20	45.30	C -
C18	3:1 trans	0.13	0.07	51.95	CC
C18	3:1 cis-9	0.85	0.34	39.63	(1
C18	3:1 cis	0.92	0.35	38.30	ر –
C18	3:2	0.09	0.03	32.69	Tro
C18	3:2 cis-9,cis-12	0.06	0.03	39.80	
C18	3:3 cis-9,cis-12,cis-15	0.02	0.01	49.63	
C18	3:2 cis-9,trans-11	0.03	0.02	56.42	
Sat	urated	2.82	0.87	31.02	
Mc	onounsaturated	1.20	0.41	34.29	
Po	yunsaturated	0.18	0.06	32.35	
Un	saturated	1.37	0.46	33.16	
Sho	ort chain (C4-C10)	0.36	0.12	32.00	
Me	dium chain (C12-C16)	2.08	0.67	32.28	
Lor	ng chain (C17-C22)	1.74	0.63	36.08	
On	nega-3	0.03	0.02	52.40	
On	nega-6	0.11	0.03	31.91	

High variability of FA :

Coefficient of variation (CV) (100/mean * SD) ranged from 31.02% to 56.42%.

gembloux

^{agro bic}Most Interesting Results

Constituent (g/dl of milk)	R ² validation (250 new samples)				
C4:0	0.83				
C6:0	0.88				
C8:0	0.90				
C10:0	0.90				
C12:0	0.90				
C14:0	0.91				
C16:0	0.86				
C18:0	0.74				
C18:1 trans	0.84				
C18:1 cis-9	0.90				
C18:1 cis	0.91				
Saturated FA	0.98				
Monounsaturated FA	0.96				
Polyunsaturated FA	0.82				
Unsaturated FA	0.96				
Short chain FA	0.91				
Medium chain FA	0.92				
Long chain FA	0.93				

R²v confirms the ability of MIR to predict some FA directly in bovine milk

Complete dataset

- Validation samples were added to the calibration set (517 samples)
 - 267 calibration samples + 250 validation samples
- Thanks to the good mid-infrared predictions of fatty acids, the critical T test was used to detect abnormal gas chromatographic values
- Thanks to the increase of samples in the dataset the use of repeatability file was less interesting
 - The best method was PLS + DER1

Constituent (g/dl of milk)	N	Mean	SD	SECV	R ² cv	RPD	
C4:0	490	0.10	0.03	0.01	0.94	4.1	
C6:0	492	0.07	0.02	0.00	0.97	5.7	
C8:0	490	0.04	0.02	0.00	0.97	6.1	
C10:0	495	0.10	0.04	0.01	0.96	5.1	
C12:0	495	0.12	0.05	0.01	0.96	5.2	
C14:0	494	0.39	0.13	0.02	0.97	5.4	RPD was
C14:1	493	0.04	0.01	0.01	0.68	1.8	globally ≥ 2
C16:0	494	1.02	0.37	0.08	0.95	4.6	for all studied
C16:1 cis	493	0.07	0.02	0.01	0.71	1.9	FΔ
C17:0	484	0.03	0.01	0.00	0.89	3.1	
C18:0	492	0.37	0.17	0.05	0.90	3.2	RPD ranged
C18:1 trans	502	0.14	0.07	0.02	0.88	2.9	from 1.0 to
C18:1 cis-9	494	0.73	0.28	0.05	0.97	5.9	
C18:1 cis	495	0.79	0.30	0.05	0.97	6.0	15.7
C18:2	503	0.08	0.03	0.01	0.73	1.9	
C18:2 cis9,cis-12	502	0.05	0.02	0.01	0.74	2.0	R ² cv ranged
C18:3 cis9,cis-12,cis-15	489	0.02	0.01	0.01	0.71	1.8	from 0.71 to
C18:2 cis9,trans-11	488	0.04	0.02	0.01	0.74	2.0	1 00
Saturated FA	496	2.40	0.80	0.05	1.00	15.7	1.00
Monounsaturated FA	491	1.06	0.37	0.04	0.99	8.9	
Polyunsaturated FA	499	0.16	0.05	0.02	0.85	2.6	
Unsaturated FA	492	1.22	0.41	0.04	0.99	9.6	
Short chain FA	486	0.31	0.11	0.02	0.98	6.7	
Medium chain FA	496	1.78	0.60	0.09	0.98	6.5	
Long chain FA	495	1.52	0.57	0.09	0.98	6.5	
Branched FA	492	0.09	0.03	0.01	0.83	2.4	
Omega-3	485	0.03	0.01	0.01	0.75	2.0	
Omega-6	504	0.10	0.03	0.02	0.74	2.0	

Constituent (g/dl of milk)	N	Mean	SD	SECV	R ² cv	RPD
C4:0	490	0.10	0.03	0.01	0.94	4.1
C6:0	492	0.07	0.02	0.00	0.97	5.7
C8:0	490	0.04	0.02	0.00	0.97	6.1
C10:0	495	0.10	0.04	0.01	0.96	5.1
C12:0	495	0.12	0.05	0.01	0.96	5.2
C14:0	494	0.39	0.13	0.02	0.97	5.4
C14:1	493	0.04	0.01	0.01	0.68	1.8
C16:0	494	1.02	0.37	0.08	0.95	4.6
C16:1 cis	493	0.07	0.02	0.01	0.71	1.9
C17:0	484	0.03	0.01	0.00	0.89	3.1
C18:0	492	0.37	0.17	0.05	0.90	3.2
C18:1 trans	502	0.14	0.07	0.02	0.88	2.9
C18:1 cis-9	494	0.73	0.28	0.05	0.97	5.9
C18:1 cis	495	0.79	0.30	0.05	0.97	6.0
C18:2	503	0.08	0.03	0.01	0.73	1.9
C18:2 cis9,cis-12	502	0.05	0.02	0.01	0.74	2.0
C18:3 cis9,cis-12,cis-15	489	0.02	0.01	0.01	0.71	1.8
C18:2 cis9,trans-11	488	0.04	0.02	0.01	0.74	2.0
Saturated FA	496	2.40	0.80	0.05	1.00	15.7
Monounsaturated FA	491	1.06	0.37	0.04	0.99	8.9
Polyunsaturated FA	499	0.16	0.05	0.02	0.85	2.6
Unsaturated FA	492	1.22	0.41	0.04	0.99	9.6
Short chain FA	486	0.31	0.11	0.02	0.98	6.7
Medium chain FA	496	1.78	0.60	0.09	0.98	6.5
Long chain FA	495	1.52	0.57	0.09	0.98	6.5
Branched FA	492	0.09	0.03	0.01	0.83	2.4
Omega-3	485	0.03	0.01	0.01	0.75	2.0
Omega-6	504	0.10	0.03	0.02	0.74	2.0

- MIR can be used to quantify FA directly on milk
- Previous studies used only PLS to develop calibration equations → the obtained results showed the advantage of using a method which combines PLS and the first derivative applied to the spectral data.

Interest

- Implementation of these equations directly in milk lab
 - Useful for dairy industries to develop dairy products with differentiated nutritional quality
 - Since 2008, the MIR predictions of FA are implemented in our Walloon milk lab
 - Used by one dairy company to give subsidies to the farmers who produce more unsaturated FA in milk
 - Milk recording organisations: improvement of FA profile
 - Management tools: feeding...
 - Selection tools: quantitative genetics, molecular genetics

Acknowledgement

- Walloon Breeding Association (AWE) and Milk Committee of Battice
- National Fund for Scientific Research (FNRS): 2.4.623.08.F
- Ministry of Agriculture of the Walloon Region of Belgium (projects D31-1207 and D31-1224/S1)
- European Commission, Directorate-General for Agriculture and Rural Development, under Grant Agreement 211708 (project Robustmilk).

This study has been carried out with financial support from the Commission of the European Communities, FP7, KBBE-2007-1. It does not necessarily reflect its view and in no way anticipates the Commission's future policy in this area.

www.robustmilk.eu

