Increase in accuracy using multi-trait genomic breeding value estimation

Mario Calus Roel Veerkamp

Animal Breeding & Genomics Centre

Introduction

- Genomic breeding value estimation yields accurate breeding values for juvenile animals
 - Increased accuracy due to use SNPs
- Multi-trait was a major development in breeding value estimation
 - Increased accuracy due correlation between traits (e.g. across country evaluations)
- => Can we combine both approaches?

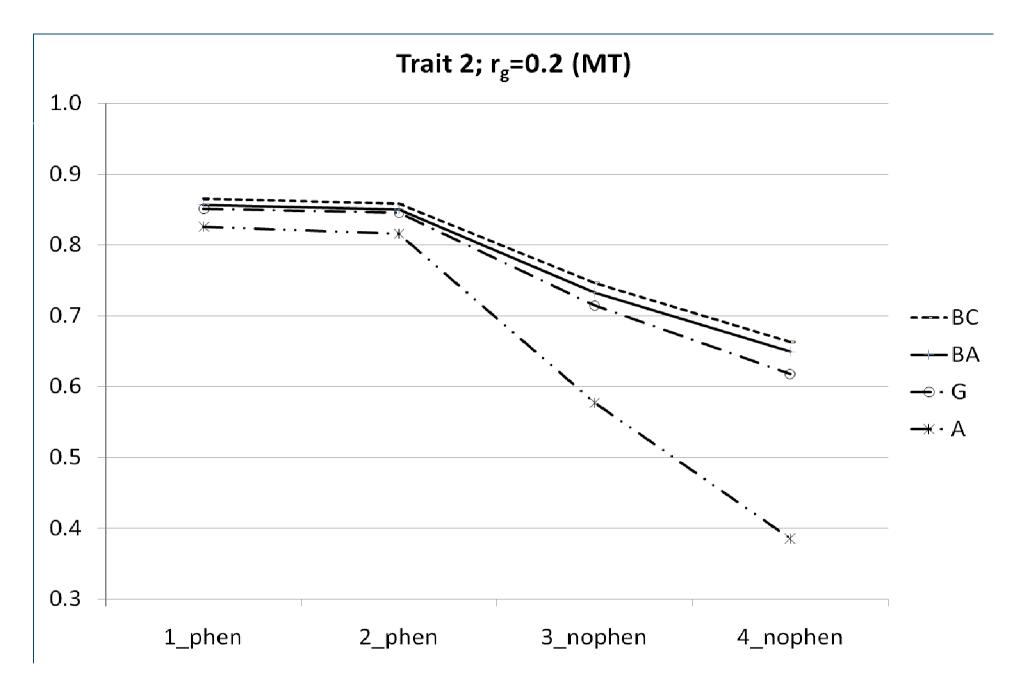
Four different MT models¹ were applied

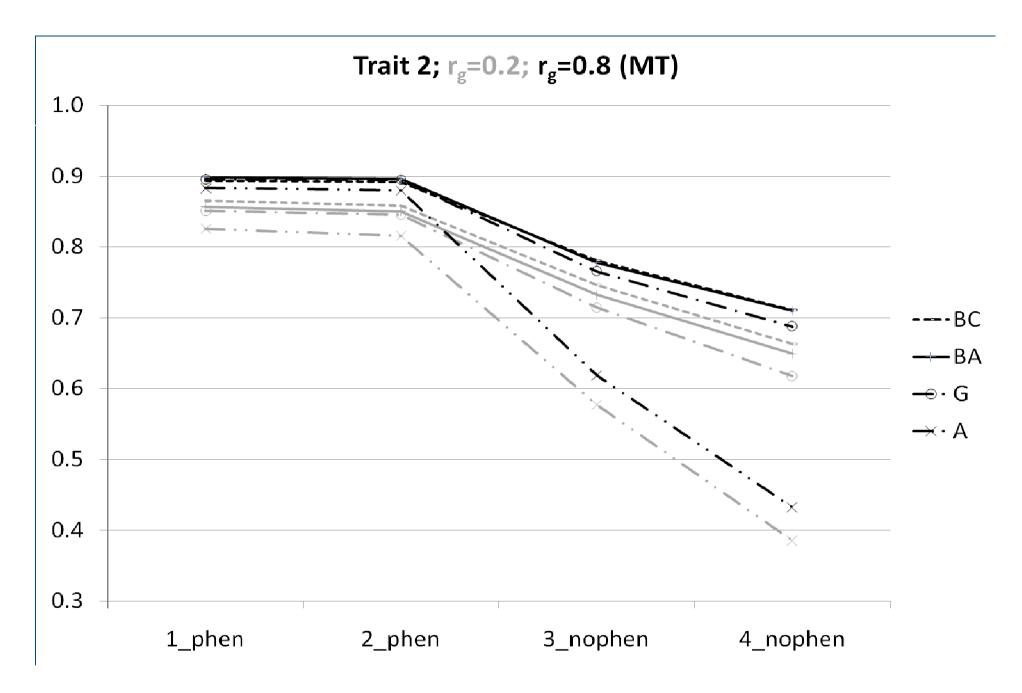
Name	Model	SNP variances
A	Polygenic - pedigree relationship matrix	SNP not included
G	Polygenic - marker relationship matrix	Equal for all SNP
BA	BayesA: effects estimated per SNP	Drawn from 1 distribution
BC	BayesC: effects estimated per SNP	Drawn from 2 distributions

¹ Variances are estimated in all models simultaneously with the effects

=> Single (ST) and multitrait (MT) analyses with all models

Simulation


- Ne = 500
- Genome size: 5 M
- 5.655 SNPs
- 200 QTL equally distributed across genome
- QTL effects normally distributed
- Two traits; $h^2(tr. 1) = 0.9 \& h^2(tr. 2) = 0.6$
- 3 genetic correlations: 0.2, 0.5 & 0.8


Simulated data

		Pnenotype :	
Generation	# animals	trait 1	trait 2
1	500	Yes	Yes
2	500	Yes	Yes
3	500	No	No
4	500	No	No

Results summarized

Single trait (not shown):

Accuracy of G, BayesA & BayesC very similar

Multi-trait:

Accuracy BayesC > BayesA > G (small differences)

=> How much is the accuracy increased by MT?

Results: accuracy MT – accuracy ST

- ☐ Accuracy of trait 1 did not improve with MT
- ☐ Accuracy of trait 2 juvenile animals (gen. 3):

Genetic correlation

Model	0.2	0.5	0.8
A	0.000	0.009	0.034
G	0.004	0.017	0.052
BayesA	0.015	0.024	0.056
BayesC	0.030	0.040	0.071

Conclusions

- MT: Accuracy BC > BA > G (small differences)
 - Difference may increase with more extreme QTL effects
- For juvenile animals, MT yielded a maximum increase in accuracy of 0.07

Acknowledgements

Involved companies: Hendrix Genetics, CRV

 Netherlands Organisation for Scientific Research (NWO – Casimir)

RobustMilk

