The influence of genetic selection on the milk fatty acid profile of spring calving dairy cows OBUSTMILK-

S. Mc Parland¹, D.P. Berry¹, J. Coleman¹, R.F. Veerkamp² and H. Soyeurt^{3,4}

¹Teagasc Moorepark Dairy Production Research Centre, Co. Cork, Ireland Animal Breeding and Genomics Centre, Animal Sciences Group, PO Box 65, 8200 AB, Lelystad, The Netherlands

³University of Liège, Gembloux Agro-Bio Tech - GxABT, Gembloux, Belgium, ⁴National Fund for Scientific Research, Brussels, Belgium

1. Introduction

- Bovine milk contains ~70% saturated fat and 30% unsaturated fat
- Research has shown health benefits associated ۲ with unsaturated fats in milk

- 2. Materials and Methods
- 3 groups of Holstein-Friesian (HF) defined:
- 1. National average genetic merit North American HF States LowNA (n=46) EBI* = €49
- 2. High genetic merit North American HF SighNA (n=46) EBI = €77
- 3. High genetic merit New Zealand HF
- HighNZ (n=48) EBI = €89
- Weekly milk samples analysed using mid-infrared spectrometry
- Prediction equations used to determine fat composition
- Fats predicted from milk:
 - 1. saturated fat (SAT)
 - 2. unsaturated fat (UNSAT)
 - 3. monounsaturated fat (MONO)
 - 3. short chain fatty acids (SCFA)
 - 4. medium chain fatty acids (MCFA)
 - 5. long chain fatty acids (LCFA)

3. Results

- Mean fat percent ranged from 4.4% (LowNA) to 4.8% (HighNZ)
- Differences in fat composition observed between HF cows of New Zealand ancestry and HF cows of North American ancestry (Table below)
- No statistical differences between the fat composition of the high and low North American HF group

	-	· · ·				
	SAT	UNSAT	MONO	SCFA	MCFA	LCFA
High NA	66.1 (0.31) ^a	35.8 (0.31) ^a	29.9 (0.27) ^a	9.3 (0.08) ^a	46.5 (0.32) ^a	44.6 (0.36) ^a
Low NA	65.8 (0.30) ^a	36.1 (0.31) ^a	30.2 (0.27) ^a	9.3 (0.08) ^a	46.3 (0.32) ^a	45.0 (0.36) ^a
High NZ	66.8 (0.29) ^b	35.1 (0.29) ^b	29.2 (0.26) ^b	9.6 (0.07) ^b	47.2 (0.30) ^b	43.7 (0.34) ^b
P-value	<0.01	<0.01	<0.01	<0.001	<0.05	<0.01
•						

Effect of genetic group on milk fat constituents (g/100 kg fat)

HighNZ cows produce more saturated fats and less unsaturated fats per kg fat than either the HighNA or LowNA cows

4. Conclusion

- Genetic variation for milk composition is evident
- Cows of NZ ancestry produce more SAT and less UNSAT than cows of NA ancestry
- Selection for the Irish total merit index (EBI) has not influenced the fatty acid profile of milk

EBI = Economic breeding index - Irelands total merit index

Model to investigate the effect of genetic selection on fat composition: Y = Genotype + Treatment + Parity + Week of Lactation + Cow

