Innovative and practical breeding tools for <u>improved dairy products</u> from <u>more robust dairy cows</u>

Donagh Berry¹ & Roel Veerkamp²

¹Teagasc, Moorepark, Ireland ²Animal Sciences Group, Lelystad, The Netherlands

http://www.robustmilk.eu

EAAP, Crete, 23rd - 27th August 2010

What is ROBUSTMILK?

- EU small collaborative project
- Started April 2008
- Completed April 2012
- 6 Northern European partners

Objective

To develop new practical technologies to allow breeders to re-focus their selection to include milk quality and dairy cow robustness and to evaluate the consequences of selection for these traits taking cognisance of various milk production systems

Healthy, fertile, long-living cow

OBUSTMILK=

capacity to handle environmental disturbances

Project outline (6 WPs)

- 1. Common database
- 2. Phenotypic measurement tools
- 3. Statistical tools
- 4. Genomic tools
- 5. Dissemination
- 6. Management

WP1. Common database

Accuracy of genomic selection

Objective

- To gather phenotypic and genotypic data (including fixed effects) from all partners into a single database with a single pedigree file
- Database available on password protected website

Home | Explore Database | Animal List | Upload | Phenotypic Data | Documents | Admin | Field Tags | Logout

Database Name	Table Name	Description	Choose
T'Gen	hollandPhenoTable1	Wageningen phenotypic breed table	0
T'Gen	hollandPhenoTable2	Wageningen birthdate and genetic line	0
T'Gen	hollandPhenoTable3	Wageningen milk sample analysis data	0
Teagasc	irelandPhenoRbBreeds	Teagasc breed 1 and breed 2 composition of animals	0
Teagasc	irelandPhenoRbExperiments	Teagasc experiment period detail of animals	0
Langhill	langhillPhenoTable1	SAC Table of genetic line and feed group details	0
Langhill	langhillPhenoTable2	SAC Table of breeds and breed percentages	0
Langhill	langhillPhenoTable3Weekly	SAC Table of milk yields and content analysis	0
Langhill	langhillPhenoTable4	SAC Table of calving/service details	0
Langhill	langhillPhenoTable5	SAC Table of sporadic health events	0
T'Gen	hollandPhenoTable4	Wageningen calving/heat details	0
Teagasc	irelandPhenoRbFixedEff	Teagasc fixed effects of animals	0
Teagasc	irelandPhenoRbLactation	Teagasc lactation details of animals	0
Teagasc	irelandPhenoRbRoutine	Teagasc routine milk sample details	0
Teagasc	irelandPhenoRbSporadic	Teagasc sporadic codes and dates of events involving animals	0
T'Gen	hollandPhenoNBZMaster	Wageningen extra animals master table	0
T'Gen	hollandPhenoNBZPedBreed	Wageningen extra animals pedigree/breeds	0
T'Gen	hollandPhenoNBZTable1	Wageningen extra animals breed compositions	0
T'Gen	hollandPhenoNBZTable2	Wageningen extra animals genetic merit	0
Langhill	langhillPhenoProgesterone	direct transfer from langhill Progesterone table	0
	phenotypicAnimalsUnion	Union of animals with phenotypic data from all partners	0
	phenotypicMilkUnion	union of milk sample data from partners(Langhill, ASG and MPK)	0

View Table Contents

Logged in as Donagh Berry.

Home | Explore Database | Animal List | Upload | Phenotypic Data | Documents | Admin | Field Tags | Logout

Robust Milk Cow Data

< Back to Query Form <	784	Animals	Deerload Arinal Identifies	-phonotype to	bie to join with an mais-		-				
Interbull ID	Dalabase	Date of Birth	Name		Breed	Sex	Sire	Dam	Number of Lactations	Genolyped	Bio Sample
HOLIREF000068570092	leagasc	05/02/97			HOLSTEIN	F	HOLNEDM000706584914	HOXIRLF000121913759	2	no	no
HOLTRI F000070594516	Teagase	09/02/00]		HOLSTEIN	Г	HOLNZI M00000093262	HOI TRI F000076188253	2	10	10
HOLIREF000070594882	l eqgasc	03/02/01	MOOREPARK RANCHER HEN	RELIA	HOLSTEIN	F	HOLNEDM000119107155	HOXIRLF000077484000	2	no	no
HOLTRI F000070595245	Teagase	20/02/01	MOOREPARK FLC HENTIETT	Α	HOLSTEIN	Г	HOLNI DM000775328514	HOI TRI F000076504264	2	10	10
HOLIRLF000070595452	leagasc	21/02/01	MOOREPARK RANCHER HAR	DIAC	HOLSTEIN	F	HOLNEDM000119107155	HOLIREF000076251646	2	no	no
HOLTRI F000070595815	Teagase	13/01/01	MOOREPARK TIEDE NORA		HOLSTEIN	Г	HOLNEDM000316803986	HOXIRI F000076504508	2	yes	10
HOLIREF000070595893	leagasc	19/01/01	MOOREPARK HRZ BETTY		HOLSTEIN	F	HOLHRAM002292002618	HOXIRLF000076504475	2	yes	no
HOLTRI F000070595992	Teagase	21/01/01	MOOREPARK EZY DAISY		HOLSTEIN	Г	LICENEDM000780180664	HOI TRI F000076504262	2	10	10
HOLIRLF000070596106	leagasc	23/01/01	MOOREPARK ELC MILDRED		HOLSTEIN	F	HOLNEDM000775328514	HOXIRLF000070595125	2	no	no
LICETRE F000070742224	Teagase	15/02/99	BALLYHOOLY TINA		HOLSTEIN	Г	HOLNI DM000457612872	HOXIRI F000076273165	2	10	10
HOLIRLF000070742251	l eqgasc	11/02/99			HOLSTEIN	F	HOLGBRM000000552741	HOLNEDH000068983126	2	no	no
LICETRE F000070742272	Teagase	16/02/99	BALLYHOOLY JANTEE		HOLSTEIN	Г	HOLDEUM001021231601	UNKTRI F000000000000	2	10	10
HOLIRLF000070742320	l eagasc	21/02/99			HOLSTEIN	F	HOLNEDM000320073719	HOXIRLF000076273216	2	no	no
HOLTRI F000070743664	Teagase	13/04/00			HOLSTEIN	Г		HOXIRI F000076273105	2	10	10
HOLIRLF000074626701	Leagasc	04/11/98	BALLYDAGUE MERCI PUCKIE	:	HOLSTEIN	F	HOLDEUM001021231601	HOLNEDH000122820852	2	no	no
HOLTRI F000074627301	Teagase	26/11/98	DALLYDAGUE MERC GEERT1	Г	HOLSTEIN	Г	HOLDEUM001021231601	HOXNEDF000130764701	2	10	10
HOLIRLF000076188142	Leagasc	11/02/98	MOOREPARK AOIFE		HOLSTEIN	F	HOLUSAM000002137657	HOLIRLF000076822712	2	no	no
HOLTRI F000076188265	Teagase	19/02/98	MOOREPARK CARA		HOLSTEIN	Г	HOLNI DM000775328514	HOI TRI F000076843862	2	10	10
HOLIRLF000076251649	Leagasc	25/01/97			HOLSTEIN	F	HOENEDM000319570393	UNKIRLF000000000000	2	no	no
HOLTRI F000076388176	Teagase	21/01/98	ANNALEE ENHANCER CASSO	DROLE	HOLSTEIN	Г	HOLUSAM000002089381	HOXIRI F000076863584	2	10	10
HOLIREF000076478546	Leagasc	19/03/99	ANNALEE HAVEP		HOLSTEIN	F	HOLNEDM000776437936	HOXIRLF000076839179	2	no	no
HOLTRI F000076478555	Teagase	18/02/01	ANNALEE PLYWOOD		HOLSTEIN	Г	HOLFRAM002292002618	HOI TRI F000076478577	2	10	10
HOLIREF000076478558	Leagasc	06/02/00	ANNALEE FORNADO		HOLSTEIN	F	HOENEDM000785532529	HOXIRLF000076839170	2	no	no
HOLTRI F000076504221	Teagase	28/01/99	MOOREPARK CATHERINE 2		HOLSTEIN	Г	HOLNEDM000785532529	HOI TRI F000076843907	2	10	10
HOLIRLF000076504230	Leagasc	31/01/99	MOOREPARK MAYBELL		HOLSTEIN	F	HOLHRAM002290038601	HOXIRLF000076884842	2	no	no
HOLTRI F000076504299	Teagase	25/01/00	MOOREPARK TORNADO GAY	YLE	HOLSTEIN	Г	HOLNEDM000785532529	HOXIRI F000076823363	2	yes	10
1		I a a				1	1		1		

2010 2020 - A V 🖉 🕹 🖉 🖞

Status

Database complete

 Currently defining phenotypes (energy balance) from stored individual phenotypic components

 Estimation of variance components across countries – can the data be merged?

WP2. Phenotypic measurement tools

"In the era of genomics, the phenotype is king"

- Mike Coffey (SAC)

- To evaluate the usefulness of routinely measured milk mid-infrared spectrometry to predict
 - Milk quality (fatty acid content, lactoferrin)
 - Robustness (energy balance)
- Estimates of genetic parameters

What is "Mid infrared" MIR)?

Group

Overall Cows

1st Lactation

2nd Lactation

3rd Lactation

4th Lactation

Milk fatty acid content

517 milk samples (Belgium, Ireland, Scotland)

<u>Calibration</u> 267 milk samples

<u>Validation</u> 250 milk samples

$$X = TP^T + E$$
$$Y = TQ^T + F$$

Proportio	on of var	iance explained
in	external	validation
Fatty acid	ROBUSTMILK	
	n=250	
C4:0-C12:0	0.83 to 0.90	
C14:0	0.91	
C16:0	0.86	
Saturated	0.98	
Mono-unsat	0.96	
Poly-unsat	0.83	
Short chain	0.91	
Medium chain	0.91	
Long chain	0.91	
		Soyeurt et al., JDS (In Press)

Proportio	on of vari	ance ex	plained	
in	external v	validatio	n	
Fatty acid	ROBUSTMILK	Dutch	Ireland	
	n=250	n=190	n=144	
C4:0-C12:0	0.83 to 0.90	0.84 to 0.92	0.82 to 0.93	
C14:0	0.91	0.94	0.92	
C16:0	0.86	0.93	0.90	
Saturated	0.98	0.99	0.98	
Mono-unsat	0.96	0.92	0.90	
Poly-unsat	0.83	0.48	0.69	
Short chain	0.91	0.96	0.93	
Medium chain	0.91	0.96	0.96	
Long chain	0.91	0.87	0.91	

418 lactations from 268 cows (Experimental herd in Scotland)

<u>Calibration</u> 306 milk samples

Validation 112 milk samples

 $X = TP^T + E$ $Y = TQ^T + F$

Accuracy of prediction

- Energy balance
 - Across lactation = 0.71 to 0.76
 - Early lactation = 0.70 to 0.78
- Energy intake
 - Across lactation = 0.82 to 0.85
 - Early lactation = 0.80 to 0.88
- Body condition score
 - Across lactation = 0.45 to 0.48
 - Early lactation = 0.07 to 0.21

Next steps

- Validate energy balance equations in Irish dataset
- Estimate (co)variance components

WP3. Statistical tools

Objective

- Develop the statistical tools to model
 robustness (i.e., sensitivity to microand macro-environments)
- Develop statistical tools for modelling milk quality (somatic cell count)
- Joint models for milk quality and robustness

Phenotype

 $\sigma_{A_{\rm S}}^2 > 0$

 $\sigma_{A_v}^2 > 0$

Outcomes to date

- SCC>500,000 cells/mL and logo_{scc} better predictor of mastitis irrespective of whether measured weekly or monthly
- Genetic evaluations for probability of getting mastitis and probability of recovering from mastitis using just SCC data
- Number of somatic cells may be better than SCC
- Developed statistical methodology to estimate genetic variation in residual variance

Next steps

 Combine models to simultaneously estimate genetics of residual variance and environmental sensitivity across large environmental differences

WP4. Genomic tools

Objective

 Undertake whole genome associations for milk quality and robustness in research dairy cows across consortium members

Approach

- Holstein cows from four countries
 - Ireland: 546
 - Scotland: 653
 - Sweden: 144
 - The Netherlands: 590
- Illumina Bovine50 Beadchip

Two-dimensional scaling of identity by state among genotypes

Associations - fat:protein ratio

eagasc

Future work

- Expand the number of phenotypes
 - Actual energy balance
 - Dry matter intake
 - Fertility
 - Somatic cell count
- Develop new methods of undertaking associations
 - Bivariate analyses

Conclusions

- Progress can only be achieved by working together and intellectual property should be left at the door
- Huge potential for developing phenotypic tools...just a bit of clear thinking
- Improved models for evaluating udder health
- Significant genomic associations detected with ~1,500 cows

	ROBUSTMILK
	Liome Project Publications Participants Contact
TIH	Title
Objective	The ful file of this European Project is
News	Innovative and practical breeding tools for improved dairy products from more robust dairy cattle
	objective and the second se
	The objective of RobustMilk is to develop new practical technologies to a low process to re-focus their selection to include milk quality and dairy cow robustness and to evaluate the consequences of selection for these traits taking degrisance of various milk production systems.
	The leaflet about the RobustMilk project is available (Leanet).
	News
	Results obtained so far in the project have been summarized and are available: WP1, WP2, WP3, WP4, and WP5,
	What does a genotype look like? (more)
	The list of publications was updated (more).
Т	he RobustMilk project receives financial support from the
C	Commission of the European Communities EP7 KBBE-2007-1