

EUROPEL La Roche Sur Foron, 15 octobre 2010

Utilisation de l'information infrarouge moyen dans l'élevage laitier

Catherine Bastin^{1*} et Hélène Soyeurt^{1,2}

¹ Unité de Zootechnie, Gembloux Agro-Bio Tech, Université de Liège (GxABT - ULg), Gembloux, Belgique

² Fonds de la Recherche Scientifique (FRS-FNRS), Bruxelles, Belgique

Plan

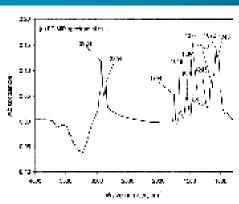
- 1. L'analyse de la composition détaillée du lait
 - Qu'est ce que la spectrométrie en moyen infrarouge?
 - Quels sont les composés potentiellement quantifiables et quels sont leurs intérêts?
- 2. RobustMilk: des vaches plus robustes produisant un lait plus sain
 - Présentation du projet RobustMilk
 - Sélectionner les vaches laitières sur la composition en acides gras du lait

Spectrométrie MIR

Spectrométrie en moyen infrarouge (MIR) utilisant la transformée de Fourier:

- technologie utilisée pour le dosage des composés majeurs du lait
 - □ taux en matière grasse, protéines, urée, lactose ...
 - pour le payement du lait ou lors du contrôle laitier
- méthode rapide, applicable à large échelle, non destructive, fiable et respectueuse de l'environnement

Spectrométrie MIR: principe

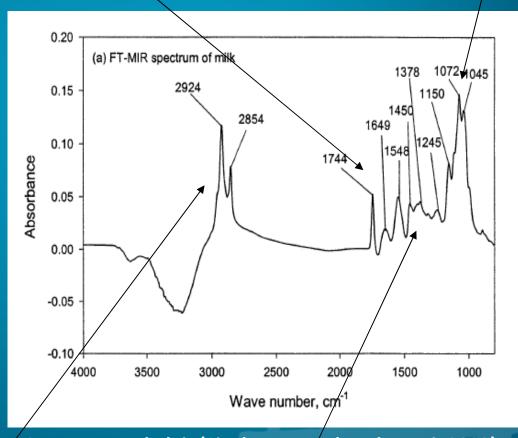


(Foss, 2008)

Spectromètre MIR

Données brutes = spectre

Spectre MIR


Spectre MIR

= absorptions du rayon
MIR à des fréquences
corrélées aux vibrations
de liaisons chimiques
spécifiques au sein d'une
molécule (Coates, 2000)

= reflet de la composition chimique globale du lait

1700 - 1500 cm⁻¹: N-H

1200 - 900 cm-1 : C-O

Spectre MIR du lait (Sivakesava and Irudayaraj, 2002)

3000-2800 cm⁻¹: C-H

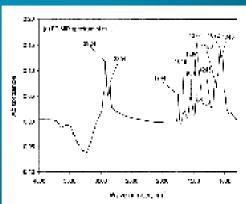
1450-1200 cm-1: COOH

Spectrométrie MIR: principe

(Foss, 2008)

Spectromètre MIR

Equations de calibration



- Protéines

Prédictions:

- Matière grasse

- Lactose
- etc.

Données brutes = spectres

Equations de calibration

- Chaque équation de calibration est propre au composé étudié.
- Importance des bonnes pratiques lors du développement et de l'utilisation de équations de calibration :
 - choix du set de calibration : sa variabilité doit refléter la variabilité de la population
 - variabilité spectrale également
 - □ importance de tester la précision des prédictions générées en routine grâce à l'utilisation d'échantillons de référence
- > Les composés ne sont pas tous dosés avec la même fiabilité:
 - □ Différents paramètres utiles: coefficient de détermination de cross-validation (R²cv), de validation externe (R²v)
 - □ RPD : rapport entre l'écart-type du set de calibration et l'erreur standard de la cross-validation

Plan

- 1. L'analyse de la composition détaillée du lait
 - Qu'est ce que la spectrométrie en moyen infrarouge?
 - Quels sont les composés potentiellement quantifiables et quels sont leurs intérêts?
- 2. RobustMilk: des vaches plus robustes produisant un lait plus sain
 - Présentation du projet RobustMilk
 - Sélectionner les vaches laitières sur la composition en acides gras du lait

Composés quantifiés par MIR

- Les composés majeurs du lait:
 - matière grasse, protéines, urée, lactose, caséine
- Mais aussi des composés plus spécifiques:
 - acides gras du lait, minéraux, lactoferrine, acétone, β-hydroxybutyrate
- Ou des indicateurs relatifs à des propriétés du lait:
 - Acidité titrable et temps de coagulation pour l'aptitude fromagère du lait

Acides gras du lait

- Des études ont mis en évidence la capacité du MIR à prédire les teneurs acides gras dans le lait (g/dl de lait).
 - □ Soyeurt et al., 2006; Rutten et al., 2009
 - Meilleur prédiction dans le lait que dans la matière grasse
- De nouveaux résultats ont été obtenus dans le cadre du projet RobustMilk:
 - □ large set de calibration provenant de 3 pays/régions (Wallonie, Irlande, Ecosse), de différentes races, vaches et de divers systèmes de productions
 - □ 18 acides gras individuels, 10 groupes
 - □ RPD > 2 pour tous les caractères étudiés

Acides gras du lait

- De nouveaux résultats ont été obtenus dans le cadre du projet RobustMilk:
 - □ Résultats pour les groupes d'acides gras

	N	Moyenne	Ecart-type	R ² cv	RPD
Saturés	496	2.40	0.80	1.00	15.7
Monoinsaturées	491	1.06	0.37	0.99	8.9
Polyinsaturés	499	0.16	0.05	0.85	2.6
Insaturés	492	1.22	0.41	0.99	9.6
Courtes chaines	486	0.31	0.11	0.98	6.7
Moyennes chaines	496	1.78	0.60	0.98	6.5
Longues chaines	495	1.52	1.52	0.98	6.5

Source: Soyeurt et al. 2010. Mid-infrared prediction of bovine milk fatty acids across multiple breeds, production systems and countries. J. Dairy Sci. Accepted.

Minéraux

> Premiers résultats: Soyeurt et al., 2009

mg/I de lait	N	Moyenne	Ecart-type	R ² cv	RPD
Ca	87	1333	260	0.87	2.74
K	61	1336	168	0.36	1.24
Mg	61	110	18	0.65	1.68
Na	87	403	107	0.65	1.68
P	87	1093	127	0.85	2.54

- Résultats prometteurs pour Ca et P
- Résultats confirmés par de récentes analyses supplémentaires

Lactoferrine

- Lactoferrine = glycoprotéine impliquée dans le système immunitaire
- Premiers résultats par Soyeurt et al., 2007

mg/I de lait	N	Moyenne	Ecart-type	R ² cv	RPD
Lactoferrine	57	253	206	0.86	2.39

Nouveaux résultats attendus dans RobustMilk

Corps cétoniques

- > Acétone: Hansen (1999) and Heuer et al. (2001)
- Résultats de de Roos et al. (2007)

mMol	N	Moyenne	SECV	R ² c
Acétone	1063	0.146	0.184	0.72
β-hydroxybutyrate	1069	0.078	0.065	0.62

Transformation fromagère

Indicateurs de l'aptitude à la transformation fromagère

		N	Moyenne	Ecart- type	R ² cv	SECV
Acidité titrable (SH°/50ml)	De Marchi et al., 2009	1063	3.26	0.43	0.81	0.25
Temps de coagulation de	De Marchi et al., 2009	1049	14.96	3.84	0.79	2.36
Rennet (min)	Dal Zotto et al., 2008	74	15.05	3.78	0.73	0.80
рН	De Marchi et al., 2009	1064	6.69	0.12	0.77	0.07
Acidité titrable (D°)	Colinet et al., 2010	203	16.22	2.01	0.90	0.64
Fermeté du caillé (mm)	Dal Zotto et al., 2008	74	32.43	7.95	0.45	5.49

Composition du lait

Lait = produit animal

Reflet du métabolisme

Reflet de l'alimentation

Reflet de l'impact environnemental

Spécificités raciales

Ex. corps cétoniques = indicateurs d'acétonémie

Ex. urée et matière grasse / protéines = indicateur de l'équilibre énergie vs.

protéinés dans ides gras = indicateur des émissions de méthane

Ex. différences interraciales pour l'activité de la delta9 - désaturase

Composition du lait

Lait = produit de consommation

Ex. payement du lait sur base des matière grasse et protéines

Ex. acide ruménique C18:2 cis-9

trans-11 propriétés anticancérigènes Ex. taux en polyinsatures éleve lie à l'oxydation de la matière grasse (rancissament du le que et la le concissament du le concissa

l'aptitude à la transformation

fromagère du lait

Valeur économique

Qualité nutritionnelle

Qualité organoleptique

Qualité technologique

Composition du lait

Lait = produit animal

Reflet du métabolisme

Reflet de l'alimentation

Reflet de l'impact environnemental

Spécificités raciales

Lait = produit de consommation

Valeur économique

Qualité nutritionnelle

Qualité organoleptique

Qualité technologique

Nécessité de développer des outils de sélection et de management pour permettre aux éleveurs laitiers d'utiliser efficacement ces informations

Lait = produit animal

Reflet du métabolisme

Reflet de l'alimentation

Reflet de l'impact environnemental

Spécificités raciales

Lait = produit de consommation

Valeur économique

Qualité nutritionnelle

Qualité organoleptique

Qualité technologique

Nécessité de développer des outils de sélection et de management pour permettre aux éleveurs laitiers d'utiliser efficacement ces informations

RobustMilk

 développement d'outils de sélection pratiques et innovants pour la production de produits laitiers de qualité issus de vaches plus robustes

Plan

- 1. L'analyse de la composition détaillée du lait
 - Qu'est ce que la spectrométrie en moyen infrarouge?
 - Quels sont les composés potentiellement quantifiables et quels sont leurs intérêts?
- 2. RobustMilk: des vaches plus robustes produisant un lait plus sain
 - Présentation du projet RobustMilk
 - Sélectionner les vaches laitières sur la composition en acides gras du lait

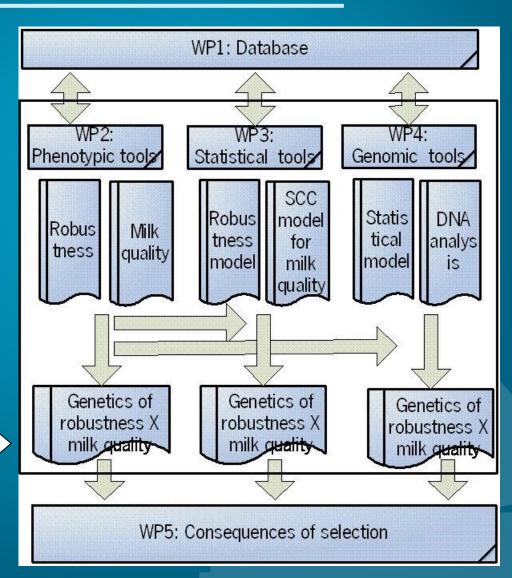
- Projet européen (FP 7)
- **Avril 2008 mars 2012**
- 6 partenaires européens

- □ Scottish Agricultural College (Ecosse)
- □ Teagasc Moorepark (Irlande)

□ Swedish University of Agricultural Sciences (Suède)

□ Gembloux Agro-Bio Tech, ULg (Belgique)

- □ Animal Sciences Group (Pays-Bas)
- □ Wageningen University (Pays-Bas)



Objectif: développer des outils de sélection pratiques et innovants pour la production de produits laitiers de qualité issus de vaches plus robustes

5 workpackages

RobustMilk: WP2

Objectif WP2 : Développer des outils de mesure de la qualité du lait (acides gras et lactoferrine) et de la robustesse des vaches (balance énergétique)

- développer des méthodes de mesure de la qualité du lait dans le cadre du contrôle laitier
- développer des méthodes de mesure de la robustesse des vaches dans le cadre du contrôle laitier
- collecter en ferme des informations sur la qualité du lait et la robustesse
- estimer les paramètres génétiques et développer des outils de sélection de la qualité du lait et de la robustesse

Plan

- 1. L'analyse de la composition détaillée du lait
 - Qu'est ce que la spectrométrie en moyen infrarouge?
 - Quels sont les composés potentiellement quantifiables et quels sont leurs intérêts?
- 2. RobustMilk: des vaches plus robustes produisant un lait plus sain
 - Présentation du projet RobustMilk
 - Sélectionner les vaches laitières sur la composition en acides gras du lait

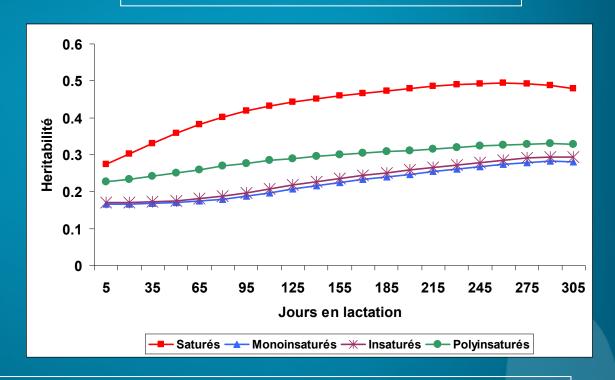
Sélectionner les acides gras?

Sélectionner sur la composition en acides gras du lait?

- Caractère mesurable en routine ?
 - ✓ Spectrométrie en moyen infrarouge
- Caractère économiquement important ?
 - ✓ Payement du lait en fonction du taux d'insaturés
 - ✓ Indicateurs des émissions de méthane, du métabolisme, influence sur la qualité du lait, etc.
- Caractère héritable et génétiquement variable ?
 - Étude de la variabilité génétique des acides gras

Variabilité génétique ?

Etude de la variabilité génétique du profil en acides gras dans le lait des vaches en première lactation en Wallonie

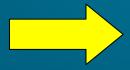

- > 29 acides gras (et groupes d'acides gras) étudiés
- modèle jour de test, animal, uni-caractère et incluant des régressions aléatoires
- > 133303 données, 28764 vaches, 568 troupeaux
- > calcul de l'héritabilité journalière moyenne
- étude en cours, résultats préliminaires

Variabilité génétique ?

Moyennes

Saturés	0.43	
Monoinsaturés	0.22	
Polyinsaturés	0.29	
Insaturés	0.23	
Courtes chaines	0.46	
Moyennes chaines	0.44	
Longues chaines	0.23	

Héritabilités journalières



- Courtes et moyennes chaines plus héritables (synthèse de novo)
- > Longues chaines et polyinsaturés ess. d'origine alimentaire
- Insaturation partiellement liée à la delta-9 désaturase

Sélectionner les acides gras?

Sélectionner sur la composition en acides gras du lait?

- Caractère mesurable en routine ?
 - ✓ Spectrométrie en moyen infrarouge
- > Caractère économiquement important?
 - ✓ Payement du lait en fonction du taux d'insaturés
 - ✓ Indicateurs des émissions de méthane, du métabolisme, influence sur la qualité du lait, etc.
- > Caractère héritable et génétiquement variable ?
 - ✓ Variabilité génétique des acides gras

Développement d'une évaluation génétique pour les taux en saturés et en monoinsaturés

Evaluation génétique

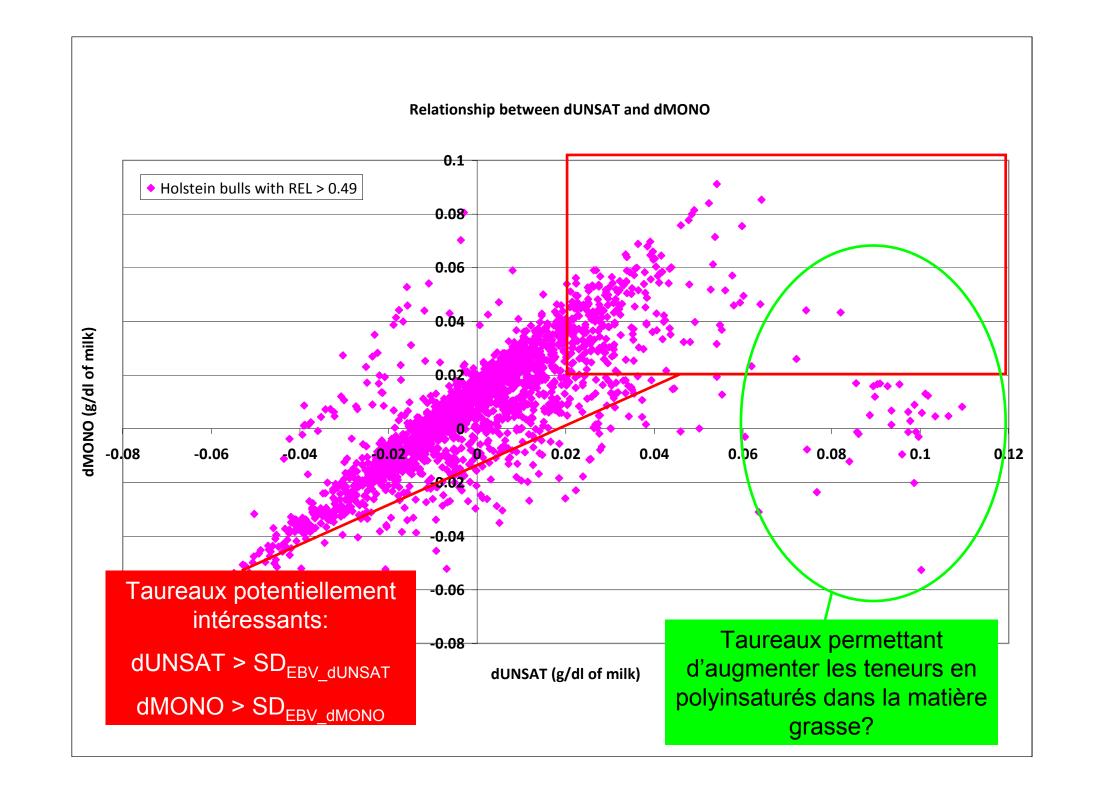
Evaluation génétique pour les acides gras en Wallonie:

- ➤ Intégration des taux en saturés et mono-insaturés (g/dl lait) dans la routine d'évaluation des caractères de production
- Données pour l'estimation des valeurs d'élevage :
 - □ vaches en 1^{ère} lactation au contrôle laitier en Région
 Wallonne depuis 2007
 - **□** 6700000 données production
 - □ 220000 données acides gras

Evaluation génétique

Evaluation génétique pour les acides gras en Wallonie:

- > Mais important de tenir compte du taux de matière grasse
- Post-traitement des valeurs d'élevage acides gras pour les exprimer comme des indicateurs de la désaturation de la matière grasse


dUNSAT = - (VEsat - VEsat_{attendue})

dMONO = (VEmono – VEmono_{attendue})

VEsat_{attendue} et VEmono_{attendue} sont calculés sur base des corrélations génétiques avec les rendements en lait et matière grasse

Evaluation génétique

- Variation souhaitée : ↑ de dUNSAT et ↑ dMONO
 - augmentation du taux d'insaturés dans la matière grasse
- Héritabilités modérées
 - **□** dUNSAT = 0.22
 - **□** dMONO = 0.43
- Corrélations entre dUNSAT et dMONO = 0.93
 - □ ils ne représentent pas la même chose (polyinsaturés)
- > 1895 taureaux avec valeurs d'élevage ayant une précision supérieure à 50% dont une majorité des USA, du Canada, des Pays-Bas, d'Allemagne, de Belgique et de France

Conclusions

- > La spectrométrie en moyen infrarouge
 - technologie actuellement sous-utilisée mais avec un large potentiel
 - nombre de composés potentiellement quantifiables avec un intérêt pour toute la filière laitière
 - mais nécessité de valoriser ces informations
 - notamment développement d'outils de sélection
- Projet RobustMilk : sélectionner des vaches plus robustes produisant un lait plus sain
 - notamment, développement d'une évaluation génétique acides gras pour les éleveurs laitiers wallons (et en cours de développement en Irlande et en UK)

Merci pour votre attention!

This research receives a financial support from the European Commission, Directorate-General for Agriculture and Rural Development, under Grant Agreement 211708 and from the Commission of the European Communities, FP7, KBBE-2007-1. This paper does not necessarily reflect the view of these institutions and in no way anticipates the Commission's future policy in this area.