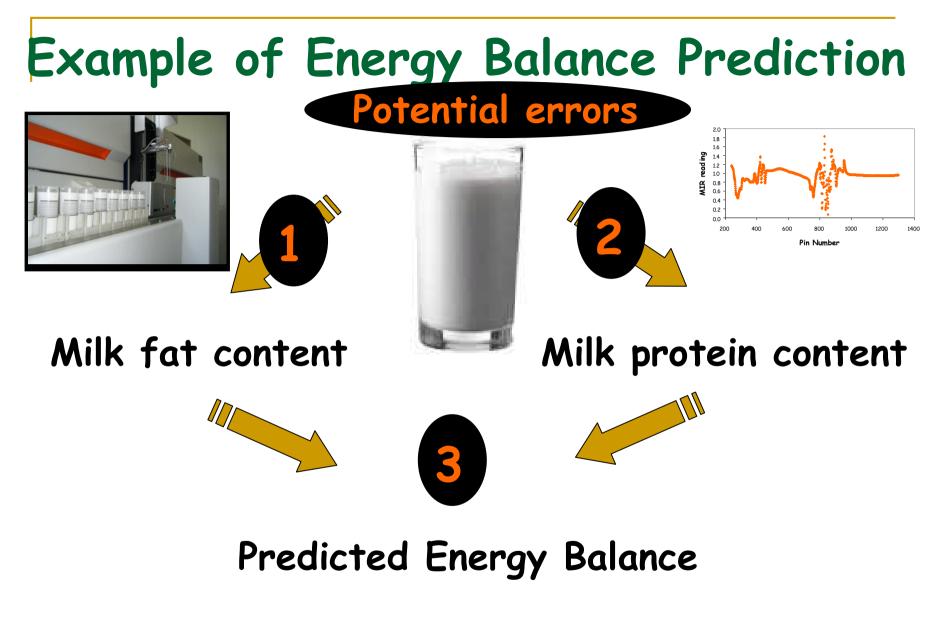
Predicting Energy Balance Status of Holstein Cows using Mid-Infrared Spectral Data

Sinéad Mc Parland, G.Banos, E.Wall, M.P.Coffey, H.Soyeurt, R.F.Veerkamp & D.P.Berry

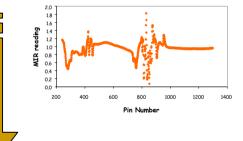
AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY


Introduction

- Energy balance (output-input) is a heritable indicator of health & fertility in dairy cows
- Useful for multi-trait breeding programme

BUT

- Expensive to measure (correctly)
- Measurement not feasible on commercial herds
- Little data available
- Methods to <u>model</u> energy balance exist
 - Require expensive phenotypes
 - Rely on phenotypes not always available

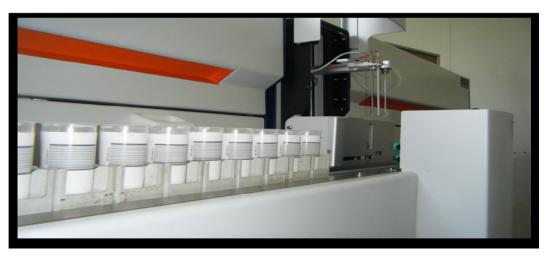

Objective

 Predict energy balance directly from milk using MIR spectral data

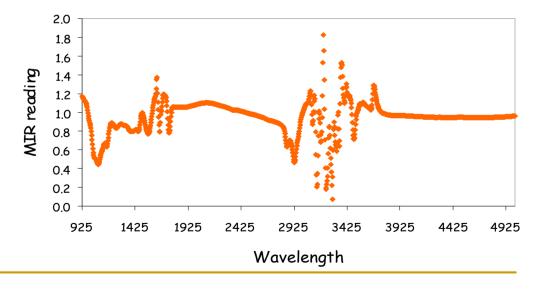
•Can we improve the accuracy of prediction?

Predicted Energy Balance

1. Data Collection


- Langhill experimental herd of Holstein cows (SAC, Scotland)
 - Two genetically divergent lines
 - Two feeding systems
- Routinely recorded phenotypic traits
 - Milk, fat, protein, DMI, live weight & BCS
- Random regressions fit to get daily solutions
 - Fixed effects: experiment group, year-season of calving, calving age, year-by-month of record
 - Random effect: cow*Σ(DIM)
 - Models fit within parity
 - Data retained between 1990-2010

- 2. Calculation of energy balance
 - Two separate measures (Banos & Coffey, 2010)
 - Direct_EB = inputs outputs incl. milk production, DMI, weight, BCS & diet
 - Body energy content (EC) = predicted protein and lipid weights from BCS and LWT
 - ALSO
 - Daily deviation from mean direct_EB (dev_EB)
 Cows own deviation within parity



- 3. Mid Infrared Spectral (MIR) data
 - Monthly samples from all cows sent for MIR analysis
 - September 2008 December 2009
 - Light shone through each milk sample
 - 1,060 wavelength readings for each sample

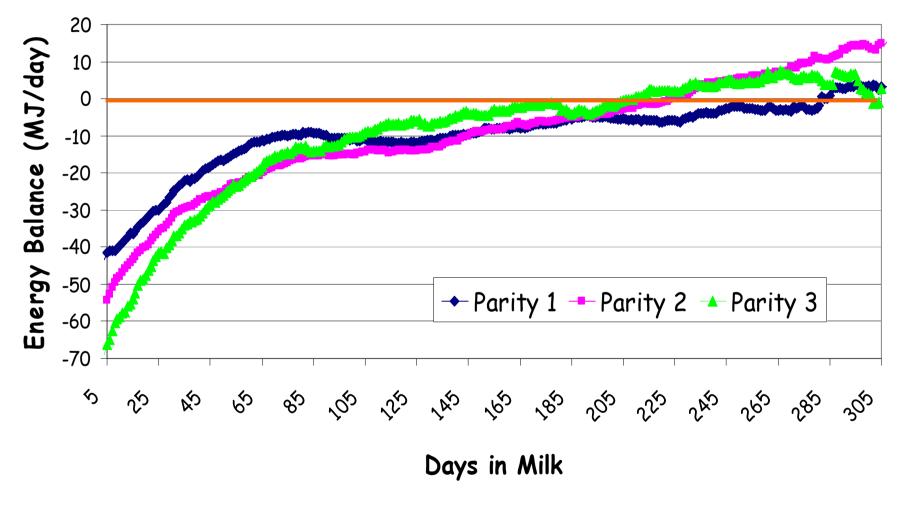
- 3. Mid Infrared Spectral (MIR) data
 - Monthly samples from all cows sent for MIR analysis
 - September 2008 December 2009
 - Light shone through each milk sample
 - 1,060 wavelength readings for each sample

4. Prediction equations

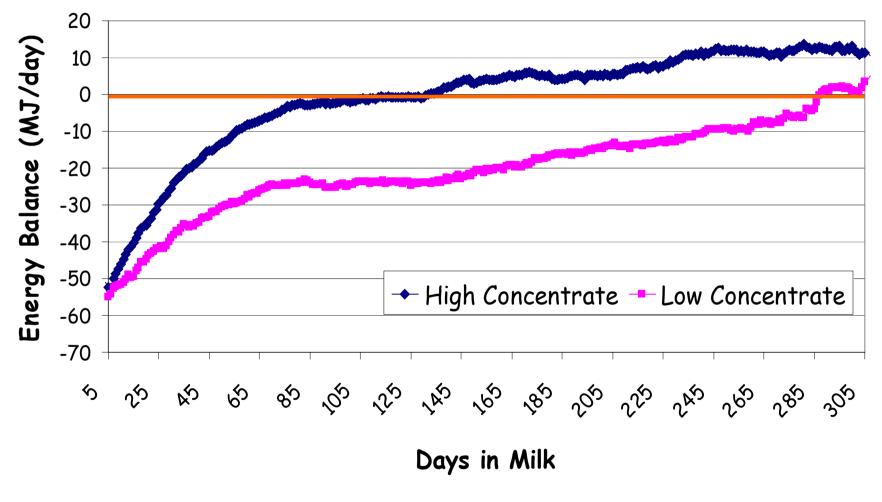
- Partial least squares analysis (PROC PLS, SAS)
- Two models MIR only

MIR + milk yield

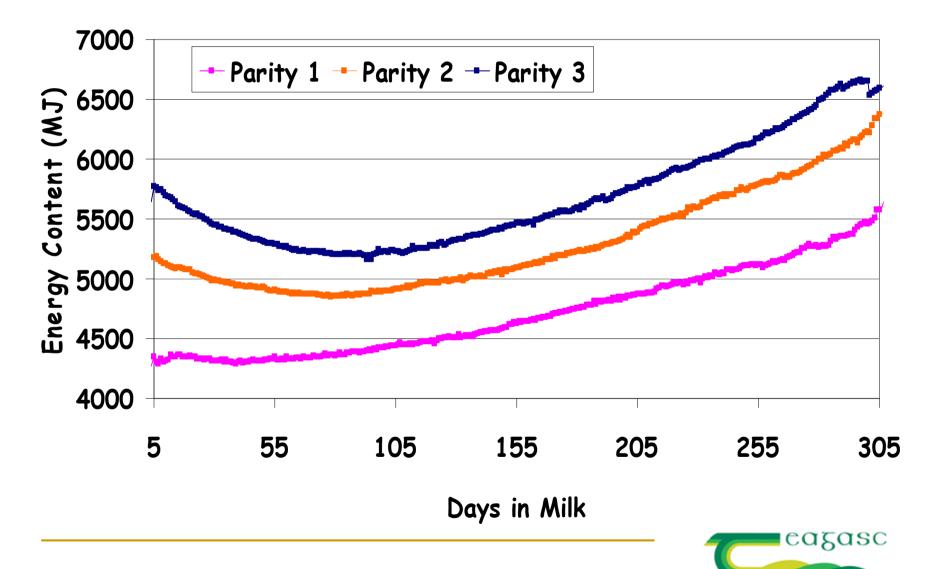
- AM, PM & MD yields analysed separately
 - 1,199 AM, 1,127 PM and 1,148 MD records available
- Cross validation method (max 20 factors)
- Also external validation
 - 25% of data set independently tested
- Best model has the highest R^2 for EXT. validation



RESULTS



Energy Balance Lactation Curves



Energy Balance - Feed Group

Energy Content Lactation Curves

Cross Validation Results

	R ²	RMSE	Factors
AM			
Direct_EB	0.41	25	18
Energy Content	0.25	1131	17
DEV_ EB	0.40	20	17
MD			
Direct_EB	0.35	26	16
Energy Content	0.23	1144	16
DEV_ EB	0.37	21	16
PM			
Direct_EB	0.32	27	12
Energy Content	0.24	1129	16
DEV_ EB	0.38	21	10
			- ca

AGRICULTURE AND FOOD DEVELOPMENT AUTHORITY

Addition of milk yield as a predictor

			•
<u>Predictors</u>	<u>MIR only</u>	<u>M</u>	IR & Yield
AM			
Direct_EB	0.41		0.50
Energy Content	0.25		0.25
DEV_ EB	0.40		0.44
ND			
Direct_EB	0.35		0.43
Energy Content	0.23		0.22
DEV_ EB	0.37		0.41
Μ			
Direct_EB	0.32		0.42
Energy Content	0.24		0.24
DEV_ EB	0.38		0.44

Update

- Data collection on-going
- Since collation of results presented, data size (MIR) has doubled
- Analyses re-run

Results updated -

	Previous Results	New Results	
Validation	Cross	Cross Extern	
AM	R ²	R ²	R ²
Direct_EB	0.41	0.43	0.42
Energy Content	0.25	0.34	0.18
DEV_EB	0.40	0.45	0.39
MD			
Direct_EB	0.35	0.47	0.44
Energy Content	0.23	0.36	0.19
DEV_EB	0.37	0.47	0.40
PM			
Direct_EB	0.32	0.53	0.45
Energy Content	0.24	0.38	0.20
DEV_EB	0.38	0.48	0.39

Conclusion

- Predicting energy balance directly from milk is more accurate than using fat:protein ratio
- Greater predictive ability when milk yield included in the model
- New data aided improved predictive ability
- Predictive ability for external validation <50%</p>
 - Still a lot of unexplained variation
 - "Noisy" phenotype as measured here
- Work on-going to improve equations

Acknowledgements

This work was carried out as part of the RobustMilk project that is financially supported by the European Commission under the Seventh Research Framework Programme, Grant Agreement KBBE-211708

www.robustmilk.eu