

Predicting Energy Balance Status of Holstein Cows using Mid-Infrared Spectral Data

Sinéad Mc Parland, G.Banos, E.Wall, M.P.Coffey, H.Soyeurt, R.F.Veerkamp & D.P.Berry

Introduction

Energy balance (output-input) is a heritable indicator of health & fertility in dairy cows Useful for multi-trait breeding programme BUT

- Expensive to measure (correctly)
- Measurement not feasible on commercial herds
- Little data available
- Methods to model energy balance exist
 - Require expensive phenotypes
 - Rely on phenotypes not always available

Fat to protein ratio

 Predict energy balance directly from milk using MIR spectral data

•Can we improve the accuracy of prediction?

Predicted Energy Balance

Materials and Methods

1. Data Collection

- Langhill experimental herd of Holstein cows (SAC, Scotland)
 - Two genetically divergent lines
 - Two feeding systems
- Routinely recorded phenotypic traits
 - Milk, fat, protein, DMI, live weight & BCS
- Random regressions fit to get daily solutions
 - Models fit within parity
 - Data retained between 1990-2010

Materials and Methods

- 2. Calculation of energy balance
 - **Two separate measures** (Banos & Coffey, 2010)
 - Direct_EB = inputs outputs
 - incl. milk production, DMI, weight, BCS & diet
 - Body energy content = predicted protein and lipid weights from BCS and LWT
- 3. Mid Infrared Spectral (MIR) data
 - Monthly samples from all cows sent for MIR analysis
 - September 2008 May 2010

Materials and Methods

- 4. Prediction equations
 - Partial least squares analysis
 - Two models MIR only

MIR + milk yield

- AM, MD & PM yields analysed separately
 - 1,883 AM, 1,731 MD and 1,855 PM records
- Cross validation method
- Also external validation
 - 25% of data set independently tested
- Best model highest r for external validation

RESULTS

Energy Balance Lactation Curves

Energy Balance - Feed Group

Energy Content Lactation Curves

Cross Validation Results

Correlation

Fat to Protein Ratio & Direct_EB = -0.28

(early lactation)

AM	
Direct_EB (MJ/d)	0.72
Energy Content (MJ)	0.56
MD	
Direct_EB (MJ/d)	0.71
Energy Content (MJ)	0.62
PM	
Direct_EB (MJ/d)	0.75
Energy Content (MJ)	0.63

r

External Validation Results

	External Validation		
	b (se)	RMSE	r
AM			
Direct_EB (MJ/d)	0.93(0.05)	22.18	0.68
Energy Content (MJ)	0.77(0.07)	876.44	0.43
MD			
Direct_EB (MJ/d)	0.94(0.05)	16.72	0.67
Energy Content (MJ)	0.80(0.06)	833.48	0.52
PM			
Direct_EB (MJ/d)	0.95(0.04)	20.32	0.72
Energy Content (MJ)	0.83(0.06)	822.56	0.54

Adding milk to the model

Μ	MIR only		MIR + Milk	
	r		r	
AM				
Direct_EB (MJ/d)	0.68	<	0.70	
Energy Content (MJ)	0.43	<	0.46	
MD				
Direct_EB (MJ/d)	0.67	<	0.69	
Energy Content (MJ)	0.52	<	0.54	
PM				
Direct_EB (MJ/d)	0.72	<	0.75	
Energy Content (MJ)	0.54	<	0.55	

Conclusion

- Predicting energy balance directly from milk is more accurate than using fat:protein ratio
- Greater predictive ability when milk yield included in the model
- Maximum predictive ability for external validation 75%
 - Still a lot of unexplained variation
 - "Noisy" phenotype as measured here

Implications

 Involvement in another project OptiMIR (http://www.optimir.eu)
Roll these equations nationally via milk recording agencies
Provide an energy status prediction to farmers
Bring this on a further step to predict fertility using mid-infrared spectrometry

This work was carried out as part of the RobustMilk project that is financially supported by the European Commission under the Seventh Research Framework Programme, Grant Agreement KBBE-211708

www.robustmilk.eu

