Use of MIR to predict milk fat composition

An across breed and country validation

Myrthe Maurice – Van Eijndhoven, Hélène Soyeurt, Frédéric Dehareng, and Mario Calus

Animal Breeding & Genomics Centre

Acknowledgements

Ministry of Economic Affairs, Agriculture and Innovation (code: KB-04-002-021 and KB-05-003-041)

supported by the European Commission (Grand Agreement KBBE-211708)

The farmers

Milk quality

- Milk quality related to human health
 - Fat
 - Protein
 - Minerals
- Fat → milk contains a wide range of different saturated and unsaturated fatty acids (FA)
 - Favorable FA (like Conjugated Linoleic acid (CLA) and Omega 3)
 - Unfavorable FA (like Myristic acid and Palmitic acid)

Methods to measure

- Gas Chromatography (GC)
 - Expensive ⊗
 - Time consuming ⊗
 - Accurate
- Mid-Infrared spectrometry (MIR)
 - Cheap ☺
 - Fast ②
 - Less accurate ...

MIR

- Measure absorption of different infrared frequencies
- Infrared range 900 cm⁻¹ to 5,000 cm⁻¹; 1,060 data points
- Calibration equations to predict FA composition
 - GC as golden standard

Aim

- Validation of calibration equations to predict detailed fatty acid composition using MIR-spectra
 - → Across breed and country

Calibration equations

- Developed in the EU FP 7 project RobustMilk
- Calibration data set contained <u>1236 milk</u> samples
 - from herds in Ireland, Scotland, and the Walloon Region of Belgium
 - with purebred and crossbred cows from different breeds like Holstein Friesian, Jersey, Red and White, and dual purpose Belgium Blue.
- Calibration data samples were selected based on maximizing variability of MIR spectra

Validation data set

- 190 milk samples from 12 herds in the Netherlands
- Cows from different breeds:
 - 47 samples from Dutch Friesians (DF)
 - 52 samples from Meuse-Rhine-Yssel (MRY)
 - 45 samples from Groningen White Headed (G)
 - 46 samples from Jersey (JER)
- Each milk sample was analyzed using both MIR and GC

DF

MRY

 \mathbf{G}

Results: R² of prediction – individual FA

	Breed ¹				
Trait	G	MRY	DF	JER	
C14:0	0.93	0.97	0.93	0.92	
C16:0	0.86	0.90	0.93	0.86	
C18:0	0.80	0.64	0.65	0.58	
C18:2 cis 9,12 (omega 6)	0.17	0.63	0.26	0.32	
C18:3 cis 9,12,15 (omega 3)	0.29	0.10	0.02	0.10	
C18:2 cis9 trans11	0.36	0.30	0.49	0.00	

¹G = Groningen White Headed, DF = Dutch Friesian, MRY = Meuse-Rhine-Yssel, JER = Jersey, and HF = Holstein Friesian.

² Breeds total is R² across all predictions for G, DF, MRY, and JER.

Results: R² of prediction – groups of FA

	Breed ¹				
Trait	G	MRY	DF	JER	
Saturated FA	0.99	1.00	1.00	0.98	
Mono unsaturated FA	0.94	0.99	0.97	0.79	
Unsaturated FA	0.97	0.99	0.98	0.75	
Short chain FA	0.91	0.93	0.93	0.93	
Medium chain FA	0.91	0.93	0.93	0.93	
Long chain FA	0.94	0.93	0.91	0.67	
C18:1 cis (total)	0.97	0.93	0.69	0.91	

¹G = Groningen White Headed, DF = Dutch Friesian, MRY = Meuse-Rhine-Yssel, JER = Jersey, and HF = Holstein Friesian.

² Breeds total is R² across all predictions for G, DF, MRY, and JER.

Results: R² vs. concentration g/dL milk

Conclusions

- RobustMilk calibration equations accurately predict FA content for G, DF, MRY, and JER cows in the Netherlands
 - Groups of FA and FA with higher content in milk are generally predicted with high accuracy
 - Predictions were highly accurate ($R^2 > 0.80$) over all breeds for:
 - C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, C18:1*cis*9
 - groups of FA

Thank you for your attention!

Myrthe Maurice – Van Eijndhoven^{1,2}, Hélène Soyeurt^{3,4}, Frédéric Dehareng⁵, and Mario Calus²

- ¹ Animal Breeding and Genomics Centre, Wageningen University, 6709 PG, Wageningen, The Netherlands
- ² Animal Breeding and Genomics Centre, Wageningen Livestock Research, Wageningen University and Research Centre, 8200 AB, Lelystad, The Netherlands
- ³ F.N.R.-F.N.R.S., B-1000 Brussels, Belgium
- ⁴ Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
- ⁵ Valorisation of Agricultural Products Department, Agricultural Walloon Research Centre, B-5030 Gembloux, Belgium.

