Use of MIR to predict milk fat composition

An across breed and country validation

Myrthe Maurice – Van Eijndhoven, Hélène Soyeurt, Frédéric Dehareng, and Mario Calus
Acknowledgements

Ministry of Economic Affairs, Agriculture and Innovation (code: KB-04-002-021 and KB-05-003-041)

supported by the European Commission (Grand Agreement KBBE-211708)

The farmers
Milk quality

- Milk quality related to human health
 - Fat
 - Protein
 - Minerals

- Fat → milk contains a wide range of different saturated and unsaturated fatty acids (FA)
 - Favorable FA (like Conjugated Linoleic acid (CLA) and Omega 3)
 - Unfavorable FA (like Myristic acid and Palmitic acid)
Methods to measure

- Gas Chromatography (GC)
 - Expensive 😞
 - Time consuming 😞
 - Accurate 😊

- Mid-Infrared spectrometry (MIR)
 - Cheap 😊
 - Fast 😊
 - Less accurate ..
MIR

- Measure absorption of different infrared frequencies
- Infrared range 900 cm\(^{-1}\) to 5,000 cm\(^{-1}\); 1,060 data points
- Calibration equations to predict FA composition
 - GC as golden standard
Aim

- Validation of calibration equations to predict detailed fatty acid composition using MIR-spectra

→ Across breed and country
Calibration equations

- Developed in the EU FP 7 project RobustMilk

- Calibration data set contained 1236 milk samples
 - from herds in Ireland, Scotland, and the Walloon Region of Belgium
 - with purebred and crossbred cows from different breeds like Holstein Friesian, Jersey, Red and White, and dual purpose Belgium Blue.

- Calibration data samples were selected based on maximizing variability of MIR spectra
Validation data set

- 190 milk samples from 12 herds in the Netherlands

- Cows from different breeds:
 - 47 samples from Dutch Friesians (DF)
 - 52 samples from Meuse-Rhine-Yssel (MRY)
 - 45 samples from Groningen White Headed (G)
 - 46 samples from Jersey (JER)

- Each milk sample was analyzed using both MIR and GC
Results: R^2 of prediction – individual FA

<table>
<thead>
<tr>
<th>Trait</th>
<th>G</th>
<th>MRY</th>
<th>DF</th>
<th>JER</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14:0</td>
<td>0.93</td>
<td>0.97</td>
<td>0.93</td>
<td>0.92</td>
</tr>
<tr>
<td>C16:0</td>
<td>0.86</td>
<td>0.90</td>
<td>0.93</td>
<td>0.86</td>
</tr>
<tr>
<td>C18:0</td>
<td>0.80</td>
<td>0.64</td>
<td>0.65</td>
<td>0.58</td>
</tr>
<tr>
<td>C18:2 cis 9,12 (omega 6)</td>
<td>0.17</td>
<td>0.63</td>
<td>0.26</td>
<td>0.32</td>
</tr>
<tr>
<td>C18:3 cis 9,12,15 (omega 3)</td>
<td>0.29</td>
<td>0.10</td>
<td>0.02</td>
<td>0.10</td>
</tr>
<tr>
<td>C18:2 cis9 trans11</td>
<td>0.36</td>
<td>0.30</td>
<td>0.49</td>
<td>0.00</td>
</tr>
</tbody>
</table>

1G = Groningen White Headed, DF = Dutch Friesian, MRY = Meuse-Rhine-Yssel, JER = Jersey, and HF = Holstein Friesian.

2Breeds total is R^2 across all predictions for G, DF, MRY, and JER.
Results: R² of prediction – groups of FA

<table>
<thead>
<tr>
<th>Trait</th>
<th>Breed¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G</td>
</tr>
<tr>
<td>Saturated FA</td>
<td>0.99</td>
</tr>
<tr>
<td>Mono unsaturated FA</td>
<td>0.94</td>
</tr>
<tr>
<td>Unsaturated FA</td>
<td>0.97</td>
</tr>
<tr>
<td>Short chain FA</td>
<td>0.91</td>
</tr>
<tr>
<td>Medium chain FA</td>
<td>0.91</td>
</tr>
<tr>
<td>Long chain FA</td>
<td>0.94</td>
</tr>
<tr>
<td>C18:1 cis (total)</td>
<td>0.97</td>
</tr>
</tbody>
</table>

¹G = Groningen White Headed, DF = Dutch Friesian, MRY = Meuse-Rhine-Yssel, JER = Jersey, and HF = Holstein Friesian.

²Breeds total is R² across all predictions for G, DF, MRY, and JER.
Results: R^2 vs. concentration g/dL milk
Conclusions

- RobustMilk calibration equations accurately predict FA content for G, DF, MRY, and JER cows in the Netherlands
 - Groups of FA and FA with higher content in milk are generally predicted with high accuracy
 - Predictions were highly accurate ($R^2 > 0.80$) over all breeds for:
 - C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, C18:1cis9
 - groups of FA
Thank you for your attention!

Myrthe Maurice – Van Eijndhoven1,2, Hélène Soyeurt3,4, Frédéric Dehareng5, and Mario Calus2

1 Animal Breeding and Genomics Centre, Wageningen University, 6709 PG, Wageningen, The Netherlands
2 Animal Breeding and Genomics Centre, Wageningen Livestock Research, Wageningen University and Research Centre, 8200 AB, Lelystad, The Netherlands
3 F.N.R.-F.N.R.S., B-1000 Brussels, Belgium
4 Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
5 Valorisation of Agricultural Products Department, Agricultural Walloon Research Centre, B-5030 Gembloux, Belgium.