

Develop innovative and practical breeding tools for improved dairy products from more robust dairy cows

www.robustmilk.eu

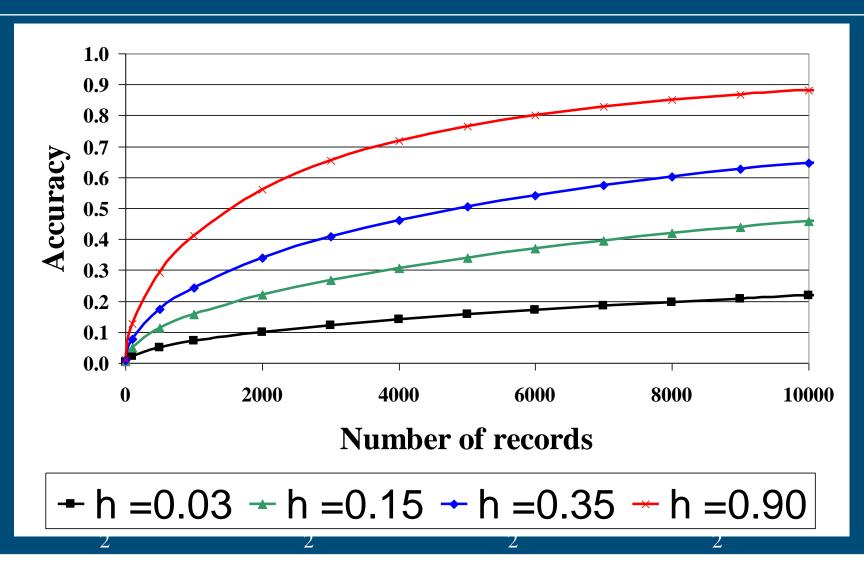
Objective

To develop new practical technologies to allow breeders to re-focus their selection to include milk quality and dairy cow robustness and to evaluate the consequences of selection for these traits taking cognisance of various milk production systems

Healthy, fertile, long-living cow

capacity to handle environmental disturbances

- How to find topper for milk quality & robustness?
- Develop selection tools (EBV)
 - Measure new traits
 - Statistics to get more out of existing data
 - Genomics
- RobustMilk follows all three routes



WP1. Common database

Accuracy of genomic selection

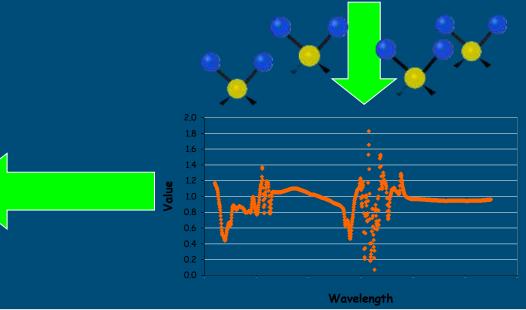
Home | Explore Database | Animal List | Upload | Phenotypic Data | Documents | Admin | Field Tags | Logout

Database Name	Table Name	Description	Choose
T'Gen	hollandPhenoTable1	Wageningen phenotypic breed table	0
T'Gen	hollandPhenoTable2	Wageningen birthdate and genetic line	0
T'Gen	hollandPhenoTable3	Wageningen milk sample analysis data	0
Teagasc	irelandPhenoRbBreeds	Teagasc breed 1 and breed 2 composition of animals	0
Teagasc	irelandPhenoRbExperiments	Teagasc experiment period detail of animals	0
Langhill	langhillPhenoTable1	SAC Table of genetic line and feed group details	0
Langhill	langhillPhenoTable2	SAC Table of breeds and breed percentages	0
Langhill	langhillPhenoTable3Weekly	SAC Table of milk yields and content analysis	0
Langhill	langhillPhenoTable4	SAC Table of calving/service details	0
Langhill	langhillPhenoTable5	SAC Table of sporadic health events	0
T'Gen	hollandPhenoTable4	Wageningen calving/heat details	0
Teagasc	irelandPhenoRbFixedEff	Teagasc fixed effects of animals	0
Teagasc	irelandPhenoRbLactation	Teagasc lactation details of animals	0
Teagasc	irelandPhenoRbRoutine	Teagasc routine milk sample details	0
Teagasc	irelandPhenoRbSporadic	Teagasc sporadic codes and dates of events involving animals	0
T'Gen	hollandPhenoNBZMaster	Wageningen extra animals master table	0
T'Gen	hollandPhenoNBZPedBreed	Wageningen extra animals pedigree/breeds	0
T'Gen	hollandPhenoNBZTable1	Wageningen extra animals breed compositions	0
T'Gen	hollandPhenoNBZTable2	Wageningen extra animals genetic merit	0
Langhill	langhillPhenoProgesterone	direct transfer from langhill Progesterone table	0
	phenotypicAnimalsUnion	Union of animals with phenotypic data from all partners	0
	phenotypicMilkUnion	union of milk sample data from partners(Langhill, ASG and MPK)	0

View Table Contents

Logged in as Donagh Berry.

WP2. Phenotypic measurement tools



What is "Mid infrared" (MIR)?

Group	Num of Cows	M Kg F Kg	P%	Surv4	Milk Solids 1/4 Contrib	Fertility % Contrib	Calving % Contrib	Beef % Contrib		EBI€
		PKg	P%	CI Days	4 601010	.a comme	7. 0011111	a come		
Overall Cows	81	158			€ 44	€ 2.7	€ 15.4	€-7.4	€ -1.7	
		7.8	0.03	-0.1	70.8%	4.4%	24.8%	0%	0%	€ 53
		7.0	0.04	-0.3						
1st Lactation	16	167			€ 45.8	€ 2.5	€ 17.7	€-7	€-1,6	
		7.7	0.03	-0.2	69.4%	3.8%	25.8%	0%	0%	€ 57
		7.4	0.04	-0.4						
2nd Lactation	22	148			€ 39.6	€ -0.4	€ 14.4	€ -8.4	€-1	
		6.5	9.02	-0.4	73.3%	8%	26.7%	0%	0%	€ 44
		6.5	0.03	-0.4						
3rd Lactation	18	156			€ 42.4	€ -14.8	€ 13.3	€-9	€-0.8	
		7.9	0.04	-0.5	70%	4%	30%	0%	0%	€ 31
		6.7	0.03	0.7						
4th Lactation	10	126			€ 39.2	€ 11.5	€ 13.1	€ -8.3	€ -1.6	
		8.0	0.06	0.0	61.4%	18%	20.6%	0%	0%	€ 54
		5.9	0.03	-0.9						
5th Lactation (+)	15	189			€ 53.6	€ 22.5	€ 18.6	€ -3.9	€ -3.8	
		9.4	0.05	0.9	56.6%	23.8%	19.7%	0%	0%	€ 87
		8.5	0.04	-1.1						

Proportion of variance explained

Fatty acid	ROBUSTMILK	Dutch	Ireland
	n=250	n=190	n=144
C4:0-C12:0	0.83 to 0.90	0.84 to 0.92	0.82 to 0.93
C14:0	0.91	0.94	0.92
C16:0	0.86	0.93	0.90
Saturated	0.98	0.99	0.98
Mono-unsat	0.96	0.92	0.90
Poly-unsat	0.83	0.48	0.69
Short chain	0.91	0.96	0.93
Medium chain	0.91	0.96	0.96
Long chain	0.91	0.87	0.91

Variance explained

- Energy balance
 - Across lactation = 0.50 to 0.58
 - Early lactation = 0.49 to 0.61
- Energy intake
 - Across lactation = 0.67 to 0.72
 - Early lactation = 0.64 to 0.77
- Body condition score
 - Across lactation = 0.20 to 0.23
 - Early lactation = 0.00 to 0.04

WP3. Statistical tools

Objective

- Develop the statistical tools to model robustness (i.e., sensitivity to micro- and macro-environments)
- Develop statistical tools for modelling milk quality (somatic cell count)
- Joint models for milk quality and robustness

Outcomes to date

- SCC>500,000 cells/mL and logσ_{scc} better predictor of mastitis irrespective of whether measured weekly or monthly
- Genetic evaluations for probability of getting mastitis and probability of recovering from mastitis using just SCC data

Developed statistical methodology to estimate genetic variation in residual variance

WP4. Genomic tools

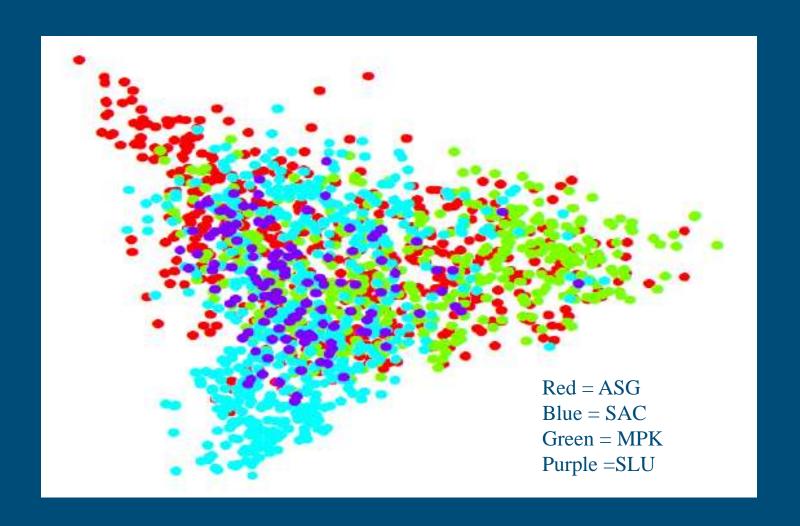
Approach

Holstein cows from four countries (#1816)

• Ireland: 415

Scotland: 558

• Sweden: 209


• The Netherlands: 634

Illumina Bovine50 Beadchip

How alike is the genetics in the herds?

Outputs

Improved prediction equations for milk fatty acids

- Being used by Optimir project
- Being rolled out in UK, Belgium and Ireland
- New equations for Lactoferrin
- Milk spectral data routinely collected in many countries
- Use of spectral data being explored to predict many new traits
- Discussions opened with other research herds for merging of feed intake data for increased power
- TSB project in UK to roll out fatty acid profiles in milk recorded cows

Conclusions

- Progress can only be achieved by working together and intellectual property should be left at the door
- Huge potential for developing phenotypic tools...just a bit of clear thinking
- Improved models for evaluating udder health
- Significant genomic associations detected with
 ~1.800 cows

