Practical applications of genomics in livestock

> Mario Calus Mari Smits Roel Veerkamp

Animal Breeding & Genomics Centre

The challenge for Livestock Production

<u>2050:</u> Feeding 9 billion people within the carrying capacity

of planet earth

2 times more with 2 times le**ss**

Challenges for Livestock (Production)

Measuring and predicting (new) phenotypes for:

On-farm management

- Fine-tune nutrition, etc.
- <u>Predict</u> status: disease, pregnancy
- Breeding purposes
 - Measuring (new) traits
 - <u>Predict</u> breeding value (for genomic selection)

=> Genomics: measure and predict an animals' phenotype

Genomics applications for breeding purposes

Marker assisted selection & Genomic selection

Marker-assisted selection

 Selection (partly) based on few genetic DNAmarkers linked with QTL

Limited uptake:

- A small part of genetic variance captured
- QTL discovery costs are high

Availability of genome-wide dense markers enabled <u>'Genomic Selection'</u>

Genomic Selection

Genome of animal X (SNPs A, B, ..., J):

Breeding value animal X = A1 + A2 + B2 + B2 + ... + J1 + J2

200 alleles per line.dat - WordPad

File Edit View Insert Format Help

100699-0003

100699-0004

100699-0004

100699-0005

100699-0005

100699-0006

100699-0006

100699-0007

100699-0007

100699-0008

100699-0008

100699-0009

100699-0009

100699-0010

100699-0010

100699-0011

100699-0011

100699-0012

100699-0012

100699-0013

100699-0013

100699-0014

100699-0014

100699-0015

100699-0015

100699-0016

100699-0016

100699-0017

100699-0017

100699-0018

100699-0018

100699-0019

100699-0019

100699-0020

100699-0020

100699-0021

100699-0021

100699-0022

100699-0022

100699-0023

100699-0023

100699-0024

100699-0024

100699-0025

100699-0025

100699-0026

1 Cor He

stan

D 🚅 🖬 🎒 🖪 🗛 🔏 🖻 🛍 🗠 🧕

GAGGACCGTCCCGT

GAGGACCGTACTGT

GGGGCCCGTCCCGT

AAGGACTATCCTGC

AGGGCCCGCCCCGC

AAGGATTATCCCGT

AAGGCCTGCCCCGC

AAGGCTTATATTGT

GGGGCCCGCCTCGC

AAGGATCACCCTAC

AGGGCCCGCCCCGC

AAGGACTGCCTTGT

GGGGACTGCCCCGC

GAGGATTGCCCTAT

GGGGCCTGCCCGC

AAGGCTTGCATTGC

GAGGCCTGCCCTGC

AGGGCCTGTCTCGC

GGGGCCCGCCCGC

AAGGATTGCATCGT

GGGGACCGCACCGC

AAGGACCGTATCGT

GGGGCCCGCACCGC

AAGGATCGCATCGT

GAGGCCCGCACCGT

GGGGCCC

AGGGACT

GGGGCCC

AAGGACC

GGGGCCC

AGGGACT

GGGGACO

AGGGACI

GGGGCC1

GAGGATI

GAGGCCT

GAAGATI

GAGGCTC

AAGGACT

GGGGACI

AAGGACT

SNP chips:

Pigs: 64k

Poultry: 57k

GTCCAACTCCGGCTGCACGCTCGGCC LATCTAATTTCAGC-ATACGCTCAGCC LCGCCAATTTCGGC-GTACGCGCGGCC LATCTAATTTAAGTTGCACGCTTAGCC JAGCTAATTCCAGCTGCACGCGCGGCC LATTCAATTTCGGCCGTACGTTCAACC LATCCAATTTCGGCCGCACGCGCAGCC **JATTCAATTTCAACTGTACGCTTGATC** FATCCGGTCTCAGCCGCACGCGCGATC **JATTTAATTTAGGTTATATGCGCAAT** CTCCGATTCCGGCCGCACGCGCGAC1 LATTTAATTTC-ATTACACGCGCGGTT SATTCAACTTC-GTTGCACGCGCGGTC LATTTAATTTCAGTTGCACGCGCGGCC FATCCAATTTCGGTTGCACGCGCGGCC LATCTAACTTCAGTCATACGTTCAATC **JATCCAACTTCAGTCATACGCGCGGCC JATCTAATTTAGGTTGTACGTGCAGTC** CTCCAACCCCGGCTGCACGCGCGGTC LATCCAATTTA-GTTGTACGCTCGGT1 FATCCGGTTTC-GCTGCACGCGCGGCC LATCCAATTTCAGCTGTATGCTCGATT LAGCCAGCTTCGGCTGCACGCTCGGCC LATCTAATTTA-GTTGTACGCTTGGT1 LAGCCAACTTC-GTTGCACGCGCGGCC

Cattle: 6k, 54k, 640k & 777k SNP

Whole genome sequence:

Cattle: 3,500,000,000 base pairs

<u>>10,000,000 SNP ???</u>

12 2

Adobe

200 allele.

CTCAGCTGCACGCTCGGCC TTCGGTTACACGCTTAGTC CTCGGCTGCACGCTCAGCC TTCAGTTGCACGTTCAAT1 TCCGGCTGCACGCGCGGCC **TTCGGTTATACGCTTAGTC** TTCGGCCGCACGCGCGGTC TTAGGT-ATACGCTTAGTC TTCGGC-ACACGCGCGGCC TTCAATTATACGCGCAACC TTCGGCTGCACGCGCAGCC **TTAAGCTGTATGCTTGGT**(TTCAGCTGCACGCGCGGCC TCAGGTTGCACGCTCAGT1 TCCGGCCGCACGCGCGGCC TTCAGCTATACGCGCAAT1

100699-0026	AGGGCCC				TTCGGCCATACGCGCAGCC
100699-0027	-GGG-C-				TTCGGTTGTATGCTCGGTT
100699-0027	-GGG-C-G-ACTGCCGGGGGGGCTGGACCO	CCGAGGCG-CTACCGTGCAACG	CCG-CGTCACAGCCC-GAACGCCTGAG	GCTGTGTCCCC-CGGGCGGG-C-G-	CGGGTGGGGGGGGGCCAACTTCGGTTGCACGCGCGGT
100/00 0000	******			TOCCTATACCATTCACCA ACCTCAT	FOC & A TOCO & A A TOTA A TTTA A CTTA TA COCTOCOT
Help, press F1					N
				T and the second	

2 Windo.

Animal Breeding & Genomics Centre

Reference data

Key for accurate prediction

Size reference dataUp to 16,000 animals

=> Increasing reference data <u>improves accuracy GS</u> for all traits

			Genomic selection in Irish dairy cattle breeding scheme.			
	Genomic selection	on	Nofima			
2	EURIE HG Persbericht 20.00	RID FIRST TO USE GENOMIC SE Genomic se ERTS IN BREEDING TECHNOLOGY T COMMERCIAL USE OF GENOMIC SEL 00 GENETIC MARKERS USED	election in Irish dairy cattle breeding scheme PRESS RELEASE VikingGenetics ready to use Genomic S	VIKINGGENETICS Of CK		
	Arnhem, 16 oktober 2006		Genomic Selection will be possible in VikingGene	tics in August. The breeding		
	Ministry of Agriculture & Forestry Print	🛅 Email 🖂 RSS 🔊	plan will be far more effective and we will be abl progress by 50% or more. At the moment we wo researchers from Aarhus University in introducin	e to improve the breeding rk closely together with g Genomic Selection.		
H te	LIC salutes breeding revoluti	on 7	h _p -lanuosc.2008 a new cot of markers became available. This	sot bas 60.000 markers		
g	4:00AM Thursday Oct 09, 2008 By Owen Hembry	- 1	Genomic Selection traits of an animal markers to test for			
G S G G By V	New DNA breeding technology is being launched o Kiwi farmers outstrips expectation, says listed ani co-operative LIC. Speaking at the annual meeting yesterday, chairma	Genomic Selection	ion-A Practical Explanation			
it	introduced in the 1950s.	A	ugust 21, 2008			
Ge	"The cumulative effect to the dairy industry will be dollars in years to come."	ince December, 2007 roughly 15,000 sing a technology called the Illumin eveloped in a partnership between ervice, the National Association of A	0 North American dairy bulls have been genotyped a BovineSNP50 BeadChip. This technology was Illumina Inc., the USDA Agricultural Research Animal Breeders, Merial, and researchers at several			
thi pri LI(ge thi	LIC's (Livestock Improvement) genomic selection part their DNA, compared with a conventional method to several cows and then production-testing the daugnters of milk.	ther universities and institutes. The rate ability to carry out 54,000 DNA main \$250 per animal. These single when they come into	major breakthrough delivered by this technology is arker tests simultaneously, for a modest cost of less nucleotide polymorphism (SNP) markers, which News Dairy Beef Products Technology Technology - Genomics	Repro Company Contact		
sa	Current selection systems could return an increase of 1.3	per cent in milk	The Genomics Revolution Is Upon Us	Accelerated Genetics		
	production from a cow in a year but LIC expected the new improve that result by at least half.	DNA process to	Genetic progress just got faster with the release of <u>Genomic</u> Evaluations during the recent Dairy Sire Summary. A quick bit of history - prior to 1935 there was no national program for evaluating dairy cattle breeding and no real genetic progress was made. Over the past 74 years various programs and/or traits have been introduced, each increasing the rate of genetic progress in differing amounts and improving the dairy cow. The recent employment of genomic evaluations is projected to have one of the SEARCH			
	Chief executive Mark Dewdney said the initial estimate fo genetic sales in the first year was about 300,000 insemin holding orders for about 700,000 straws.	r DNA-proven ations <mark>but LIC</mark> was				

Genomic selection for new traits

For traits that are hard or expensive to measure

Allows for: ⇒ 'deep-phenotyping' difficult to measure traits (e.g. progesterone, methane emission, etc.)

⇒ Re-focussing breeding goal

Reference data is required!

Building unique reference data

- Unique data available from experiments & research herds
- RobustMilk (EU-project) combines cow data 4 countries:
 - Feed intake
 - Progesterone measurements
 - Database of 1,000 2,000 animals

Interest to increase this database
 Contact <u>roel.veerkamp@wur.nl</u>

GS - Future perspectives

Selection for "new" traits
 More balanced selection

Complete populations are genotyped
 Better identification best breeding animals

Extensions towards whole genome sequence selection
 Closer to causal loci

Whole genome sequence data

Meanwhile the Price of Large-Scale Genetic Analysis to Discover and Utilize SNPs Dropped Precipitously...

Genomics: more than DNA

Genomics applications for on-farm management

Requirements for on-farm management

- Measuring for monitoring:
 - Cheap
 - Accurate
 - Fast
- Different levels
 - Individual
 - Herd

Depending on purpose, find a balance between accuracy and costs

Pilot predicting pregnancy in dairy cows

Protein profiles on day 21 after insemination

- Using 18 pregnant & 14 non-pregnant cows & 1 protein
- 93% pregnant animals correct classified (sensitivity)
- 67% of non-pregnant animals (specificity)
- Pregnancy status can be predicted using milk samples
- Results are not reliable enough yet to develop practical test

Serum protein profiles to predict infectious disease status in pigs

Pilot infection experiment
 Control + 2 experimental groups

 Classification
 Use protein profiles for classification of animals (PLS regression)

Leave-one-out cross-validation
 Predict every record using the rest of the data

True and predicted disease status

		Day 5				Day 19		
	-	True status				True status		
		PPV	Control	PRRSV	PPV	Control	PRRSV	
predicted status	PPV	2	2	1	5	3	4	
	Control	4	7	0	1	4	0	
	PRRSV	1	0	8	2	0	3	

Using 50 preselected proteins on combined data of day 5 and 19

Serum protein profiles have potential for detection of (viral) infection in pigs in early phase of the disease

Classification accuracy was moderate - good

Perspectives on-farm genomics applications

Potential is huge

• Bridging gap between DNA and phenotype

Few practical applications so far

Large data sets needed to allow accurate prediction

Unravelling black box (approaches)

Presented approaches driven by statistical associations, not causality

Opening black box' may improve performance
 Improved understanding underlying mechanisms

Practical applications generate large data
 This helps to increase understanding

Conclusions

Predicting & measuring phenotypes using genomics:

- Requires <u>sufficiently large data</u> for deriving prediction equations
- Requires <u>appropriate statistical methodology</u>:
 y = b₁X₁ + b₂X₂ + ... + b_nX_n

Acknowledgements

Wageningen UR Livestock Research:

- Yvette de Haas
- Leo Kruijt
- Han Mulder

CVI:

- Miriam Koene
- Norbert Stockhofe-Zurwieden

