

2011 INTERBULL Meeting August 26-28, Stavanger, Norway

Genetic relationships between milk fatty acids and fertility of dairy cows

Catherine Bastin^{1*}, H. Soyeurt ^{1,2}, S. Vanderick¹, and N. Gengler ^{1,2}

¹ Animal Science Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
² National Fund for Scientific Research (FRS-FNRS), Brussels, Belgium

www.robustmilk.eu

Indicator traits for fertility

Fertility traits

- potentially difficult to measure
- often not readily available
- □ have low heritabilities
- Indicator traits are of interest to increase accuracy of EBVs for fertility
 - if easier to measure, higher heritability, and well correlated with fertility
 - e.g., milk yield, type traits, body condition score
 - milk fatty acids profile?
 - in relation to body fat mobilization

Objective

Investigate the opportunity to use fatty acid traits as indicators of fertility

- Estimate genetic correlations between days open and contents of major fatty acids in milk for 1st-parity Walloon Holstein cows
- Opportunity to include fatty acid EBVs into the Walloon fertility index ?

Part of Robustmilk project

Develop innovative and practical breeding tools for improved dairy products from more robust dairy cows

www.robustmilk.eu

Data & model

- > 22 bivariate models: DO and one of the following traits
 - Milk, fat, protein yields, fat and protein contents
 - □ Fatty acid (FA) contents (g/dl of milk)
 - □ predicted by MIR (Soyeurt et al., 2011; MIR spectra are routinely collected through milk recording)
- 29,792 first-parity Holstein cows with both DO and FA records and at least 2 FA records
- > 143,332 FA records and 29,792 DO records
- Effects of the models similar to those used for genetic evaluations

- Correlations did not change greatly over DIM
- Higher yields higher DO
 - Selection for higher yields is likely to reduce fertility

In early lactation

Milk production 1

Body fat mobilization

Release of C18:0 and C18:1 cis-9 in milk

Inhibition of de novo synthesis in mammary gland

Higher contents of C18:0 and C18:1 cis-9 in milk

= indicator of body fat mobilization -> poor fertility

In early lactation

Milk production 1

Body fat mobilization 1

Release of C18:0 and C18:1 cis-9 in milk Inhibition of de novo synthesis in mammary gland

Lower contents of C6:0 to C14:0 in milk

= indicator of body fat mobilization -> poor fertility

After 150 DIM

- > C4:0 to C16:0 -> correlations between -0.20 and 0
- → Higher contents in milk of C18:0 and C18:1 cis-9
 → better fertility

- Groups of FA: trends similar to individual FA
- Polyunsaturated FA: no strong associations

Fatty acid contents in milk are correlated to fertility and are therefore potential indicator traits for fertility.

How integrate FA into Walloon evaluation?

- ➢ Genetic evaluation for saturated FA and monounsaturated FA → dUNSAT and dMONO
 - = 2 indices representing the relative part of milk fat that is unsaturated and monounsaturated

Fatty acid contents in milk are correlated to fertility and are therefore potential indicator traits for fertility

How integrate FA into Walloon evaluation?

- ➢ Genetic evaluation for saturated FA and monounsaturated FA → dUNSAT and dMONO
- Walloon female fertility index (CFF) composed of:
 - □ Direct female fertility index (DFF)
 - = linear combination of Interbull international female fertility proofs available on the Walloon scale

Fatty acid contents in milk are correlated to fertility and are therefore potential indicator traits for fertility

How integrate FA into Walloon evaluation?

- ➢ Genetic evaluation for saturated FA and monounsaturated FA → dUNSAT and dMONO
- Walloon female fertility index (CFF) composed of:
 - Direct female fertility index (DFF)
 - □ Indirect female fertility index (IFF)
 - = linear combination of EBVs of fertility-correlated traits including BCS (IFF_{BCS}) or angularity (IFF_{ANG})

Fatty acid contents in milk are correlated to fertility and are therefore potential indicator traits for fertility

How integrate FA into Walloon evaluation?

- ➢ Genetic evaluation for saturated FA and monounsaturated FA → dUNSAT and dMONO
- Walloon female fertility index (CFF) composed of:
 - □ Direct female fertility index (DFF)
 - □ Indirect female fertility index (IFF)

Gain in reliability when including dUNSAT and dMONO into IFF_{BCS} and IFF_{ANG}?

Gain in reliability when including dUNSAT and dMONO into IFF_{BCS} and IFF_{ANG}?

No. of bulls in each class of rel

Classes of reliability	IFF _{BCS}	IFF _{BCS-FA}	IFF ANG	IFF _{ANG-FA}	CFF	CFF _{FA}
rel < 0.75	1	1	1	1	15	13
0.75 <= rel < 0.80	16	13	5	1	11	11
0.80 <= rel < 0.85	54	42	20	13	23	20
0.85 <= rel < 0.90	162	118	84	55	34	34
0.90 <= rel < 0.95	455	501	509	535	214	195
rel => 0.95	91	104	160	174	482	506

Conclusions

- > Fatty acid contents in milk are correlated to fertility
 - correlations change throughout the lactation
 - it emphasizes relationship between body fat mobilization and fertility
- ➤ Interest of using milk FA contents in indirect selection for better fertility in dairy cows
 - □ further studies will investigate all FA (C18:1 cis-9)
 - but all features of FA should be considered
 e.g., nutritional, sensory, and technological qualities of milk fat, relationships with methane emissions

Corresponding author's email: catherine.bastin@ulg.ac.be

www.robustmilk.eu

Study supported by:

- Ministry of Agriculture of the Walloon Region of Belgium (SPW-DGARNE; projects D31-1207 & D31-1224)
- National fund for Scientific Research through grants 2.4604.11, 2.4507.02F(2), F4552.05 (2.4.623.08.F)
- European Commission, Directorate-General for Agriculture and Rural Development, under Grant Agreement 211708 (project Robustmilk)

This study has been carried out with financial support from the Commission of the European Communities, FP7, KBBE-2007-1. It does not necessarily reflect its view and in no way anticipates the Commission's future policy in this area.