Genetic Evaluations for Energy Balance A Real Possibility?

Sinéad McParland,

G.Banos, M.O'Donovan, M.P.Coffey, B.McCarthy, B.O'Neill, E.Wall & D.P.Berry

- ROBUSTMILK=

Develop innovative and practical breeding tools for improved dairy products from more robust dairy cows

www.robustmilk.eu

Introduction

- Energy balance (output-input) is an indicator of health & fertility in dairy cows
- Useful for multi-trait breeding programme

BUT

- Measurement not feasible on commercial herds
- Little data available
- Milk mid-infrared spectrum accurate predictor of energy balance

Example of Energy Balance Prediction

Objective

Validate prediction equations
 on independent data

•Determine genetic parameters of predicted energy balance

Predicted Energy Balance

1. 2 Data Sets

- Langhill experimental herd (SAC, Scotland)
 2 genetically divergent lines * 2 feeding systems
- Teagasc Moorepark (Ireland)
 Different strains of Holstein-Friesian
- Routinely recorded phenotypic traits
 Milk, fat, protein, live weight, BCS & (DMI)
- Random regressions fit to data separately
 - Models fit within parity
 - Data retained between 1990-2011
- Energy balance (MJ/d) = inputs outputs
 - Incl. milk, fat, protein, LWT, BCS, DMI

2. Mid Infrared Spectral (MIR) data

- MPK samples (AM & PM) analysed weekly
- SAC samples (AM, MD & PM) analysed monthly
 - June / September 2008 January 2011
 - Light shone through each milk sample
 - 1,060 wavelength readings for each sample

2. Mid Infrared Spectral (MIR) data

- MPK samples (AM & PM) analysed weekly
- SAC samples (AM, MD & PM) analysed monthly
 - June / September 2008 January 2011
 - Light shone through each milk sample
 - 1,060 wavelength readings for each sample

3. Prediction equations

- Partial least squares analysis (PROC PLS, SAS)
- Predictors MIR spectrum + milk yield
- AM, PM & (MD) samples handled separately
- SAC samples (n ≤ 2,989)
- MPK samples (n ≤ 844)
- 3 sets of analyses
 - Calibration develop equations
 - Validation independent test of equations

Calibration & Validation Data

RESULTS

Within Research Data Set

Data Sets		Cross Val		External Validation			
Cal	Val	RMSE	R	Bias (se)	RMSE	R	
SAC							
ΡΜ	ΡΜ	24	0.70	2.18(0.85)	25	0.65	
AM	AM	24	0.70	1.57(0.90)	25	0.67	
MD	MD	24	0.72	-2.35(0.90)	25	0.69	
MPK							
ΡΜ	ΡΜ	19	0.74	3.63(1.70)	21	0.66	
AM	AM	19	0.74	-1.99(1.23)	21	0.67	

Across Research Data Set

Data Sets		Cross Val		External Validation		
Cal	Val	RMSE	R	b (se)	RMSE	R
SAC	MPK					
ΡΜ	ΡΜ	24	0.70	0.11(0.04)	28	0.09
AM	ΡΜ	25	0.69	0.08(0.03)	28	0.09
MD	ΡΜ	24	0.71	0.14(0.03)	28	0.15
ΡΜ	AM	24	0.70	-0.05(0.05)	28	0.03
AM	AM	25	0.69	0.00(0.04)	28	0.00
MD	AM	24	0.71	0.08(0.04)	28	0.07
MD PM AM MD	PM AM AM AM	24 24 25 24	0.71 0.70 0.69 0.71	0.14(0.03) -0.05(0.05) 0.00(0.04) 0.08(0.04)	28 28 28 28 28 28	0.03 0.03 0.00 0.07

Energy Balance - SAC & MPK

Days in milk

PCA of spectra - SAC & MPK

Pooled Research Data Sets

SAC (MD) and MPK (PM)

- Cross Validation
 - RMSE = 27 MJ
 - R = 0.69
- External Validation
 Slope = 0.98 (0.03)
 - Bias = 1.12 (0.88)
 - R = 0.69

Genetic parameters

Heritability of energy balance

- True 0.07 (se =0.05)
- Predicted 0.28 (se = 0.08)

Repeatability of energy balance

- True 0.29 (se =0.03)
- Predicted 0.43 (se = 0.03)

Correlations - true and predicted energy balance

• Genetic = 0.05 (0.42)

Conclusion

- The mid-infrared spectrum is useful as a predictor of energy balance
- Not useful to predict energy balance across systems
- Pooled data across systems gives a robust equation
- Low heritability and low genetic correlation between true and predicted energy balance reported
 - Small data set
- MIR spectrometry is a useful method to routinely collect large volumes of data on energy balance

Acknowledgements

This work was carried out as part of the RobustMilk project that is financially supported by the European Commission under the Seventh Research Framework Programme, Grant Agreement KBBE-211708

http://www.robustmilk.eu

