

Predicting Energy Balance Using Mid Infrared Spectrometry

Sinéad McParland 1,

Banos², McCarthy¹, Lewis¹, Coffey³, O'Neill¹, Wall³, O'Donovan¹ & Berry¹

AGRIC, Teagasc, Moorepark¹, Scottish Agricultural College, UK³, University of Thessaloniki, Greece²

Introduction

- Energy balance (output input) is a heritible indicator of fertility
- Useful for a multi-trait breeding programme
- But
 - Measurement not feasible on commercial herds
 - Little data available
- Indicators of energy balance proposed
 - Fat: protein ratio of milk

Example of energy balance prediction

Predicted Energy Balance

1. 2 data sets

- Langhill experimental herd (SAC, Scotland)
- Teagasc Moorepark (Ireland)
- Routinely recorded phenotypic traits
 - Milk, fat, protein, live weight, BCS, & (DMI)
- Random regressions fit to data seperately
 - Models fit within parity
 - Data retained between 1990-2011
- Energy balance (MJ/d) = inputs outputs
 - Incl. milk, fat, protein, live weight, BCS & DMI

2. Mid infrared spectral data

- MPK samples (AM & PM) analysed weekly
- SAC samples (AM, MD & PM) analysed monthly
 - Mid 2008 January 2011
 - Light shone through each milk sample
 - 1,060 wavelengths readings for each sample

2. Mid infrared spectral data

- MPK samples (AM & PM) analysed weekly
- SAC samples (AM, MD & PM) analysed monthly
 - Mid 2008 January 2011
 - Light shone through each milk sample
 - 1,060 wavelengths readings for each sample

3. Prediction equations

- Partial least squares regression analysis
- Predictors: MIR spectrum and milk yield
- AM, PM & (MD) samples handled separately
- SAC samples (n ≤ 2,989)
- MPK samples ($n \le 844$)
- 3 types of analysis undertaken
 - Calibration (75%) develop equations
 - Validation (25%) independent test of equations

Calibration & Validation

Calibration Validation 1. Within Research data set SAC SAC (4 iterations) MPK (4 iterations) **MPK** 2. Across Research data set **MPK** SAC 3. Pooled data sets SAC & MPK SAC & MPK

RESULTS

Within Research data set

Data Sets		Cross Val		External Validation		
Cal	Val	RMSE	R	Bias (se)	RMSE	R
SAC						
ΡΜ	ΡΜ	24	0.70	2.18(0.85)	25	0.65
AM	AM	24	0.70	1.57(0.90)	25	0.67
MD	MD	24	0.72	-2.35(0.90)	25	0.69
MPK						
ΡΜ	ΡΜ	19	0.74	3.63(1.70)	21	0.66
AM	AM	19	0.74	-1.99(1.23)	21	0.67

Across Research data set

Data Sets		Cross Val		External Validation		
Cal	Val	RMSE	R	b (se)	RMSE	R
SAC	MPK					
ΡΜ	ΡΜ	24	0.70	0.11(0.04)	28	0.09
AM	ΡΜ	25	0.69	0.08(0.03)	28	0.09
MD	ΡΜ	24	0.71	0.14(0.03)	28	0.15
ΡΜ	AM	24	0.70	-0.05(0.05)	28	0.03
AM	AM	25	0.69	0.00(0.04)	28	0.00
MD	AM	24	0.71	0.08(0.04)	28	0.07

Differences

- North American vs New Zealand Holstein-Friesian
 - Milk yield, DMI, BCS, Live weight
- Feeding system
 - Total mixed ration (SAC) vs grass (MPK)
- Milking frequency

Energy Balance - SAC & MPK

Days in milk

PCA of spectra - SAC & MPK

Pooled Research data sets

- Cross Validation
 - RMSE = 27 MJ
 - R = 0.69
- External Validation
 - Slope = 0.98 (0.03)
 - Bias = 1.12(0.88)
 - R = 0.69

Conclusion

- The mid-infrared spectrum is useful as an indicator of energy balance
- Not useful to predict energy balance UNLESS the variation to be predicted is represented in the calibration of equations
- Pooled data sets provides a robust equation

This work was carried out as part of the RobustMilk project that is financially supported by the European Commission under the Seventh Research Framework Programme, Grant Agreement KBBE-211708

http://www.robustmilk.eu

