¹ ULg - GxABT, Passage des Déportés, 2, 5030 Gembloux, Belgium

² FNRS, Rue d'Egmont, 5, 1000 Brussels, Belgium nicolas.gengler@ulg.ac.be

- Can provide practical breeding tools for milk fat composition to dairy farmers
- Milk fat composition defined by composition in fatty acids (FA)
- Data available based on mid-infrared (MIR) spectra routinely recorded through milk recording
- Genetic variation in FA already confirmed
- Multi-lactation (1-3 lactation)
- Multi-trait (milk, fat, protein yields) ⇒ extended to five traits
- Test-day random regression model
- Integrated correction of outliers
- based on residuals PCG solver ← restart from old solutions
- Three computations / year (linked to INTERBULL runs)

Table 1. Yield and FA data available evaluation July 2012
--

Trait	it First lactation			Second	lactation	Third lactation		
	N	Mean	SD	N	Mean SD	N	Mean SD	
Milk (kg)	7,086,538	17.2	6.99	5,302,270	19.6 8.71	3,791,717	20.9 9.26	
Fat (kg)	7,084,217	0.69	0.29	5,300,728	0.79 0.36	3,790,564	0.84 0.39	
Protein (kg)	7,064,771	0.57	0.22	5,293,333	0.66 0.28	3,785,262	0.69 0.29	
Fat content (%)	7,084,217	4.02	0.88	5,300,728	4.04 0.82	3,790,564	4.04 1.37	
Protein content (%)	7,064,771	3.33	0.49	5,293,333	3.41 0.49	3,785,262	3.39 0.91	
Saturated FA (%)	559,935	2.78	0.55	436,787	2.89 0.59	309,321	2.90 0.59	
Monounsaturated FA (%)	560,304	1.16	0.28	437,135	1.14 0.26	309,558	1.15 0.28	

Table 2. Genetic parameters used

	Heritabilities and genetic correlations					
Trait	Milk	Fat	Protein	SFA	MUFA	NQI*
Milk (kg)	0.37	0.91	0.97	-0.28	-0.38	0.00
Fat (kg)		0.43	0.93	0.00	-0.01	0.00
Protein (kg)			0.41	-0.22	-0.23	0.05
Saturated FA (%)				0.71	0.40	-0.69
Monounsaturated FA (%)					0.64	0.38
NQI*						0.56
* Nutritional quality selection index (NQI) based on SFA (-) and MUFA (+), restricting changes in milk and fat to 0						

Routine genetic evaluation for milk, fat and protein yields

FA data, genetic parameters

Genetic evaluation for milk fat composition

Already available

EBV for sires based on many daughters, some examples

Some very important sire of sons are present!

EBV for Walloon cows and many (foreign) sires

Table 3. Mean and SD of EBV for SFA; MUFA and relative values for NQI with their associated REL for 1292 sires with REL ≥ 0.50 for FA traits and min 1 daughters with FA records in 1 herd

Mean

Saturated FA (%)

EBV

-0.026 0.253

REL

0.77 0.13

Mean

Monounsatura	ted FA (%)	-0.0	0.0	66	0.71).14
NQI* (in genetic S	SD)	0.0	43 0.5	70	0.75	0.13
	ity selection inde ges in milk and t LK - 0.425 FAT	fat to 0; s	tandardize	ed weights use		
100 80 60 40 20 0			0.50	0. 6.	2.00	2.50

Figure 1. Distribution of 1292 sires among classes of NQI index values

Breeding tools for dairy farmers

Near future

Genomic prediction

International collaboration?

- Phenotypes ("King" in the World of Genomics):
 - Other countries getting FA records (potentially limited subpopulations)
 - Pooling phenotypes for FA makes sense!
 - But also MIR database available to predict other traits (methane, ...)
- Genotypes:
 - Optimum combining all available phenotypes with genotypes
 - However more interaction between owners of both needed, e.g. owners providing their genotypes to phenotype owners to get predictions for their animals for novel traits: win-win situation
- Next step: Integrating external EBV for traditional traits in model \Leftarrow INTERBULL evaluations
 - Bayesian integration of external values for correlated traits
 - Increased reliabilities
- Also: Implementing Genomic evaluation
 - Reference population \leftarrow collaboration?
 - Advanced single-step methods
 - Prediction of GEBV for important sires

 collaboration of bull owners
- Deploying practical breeding tools for milk fat composition to dairy farmers

 Industry collaboration

