

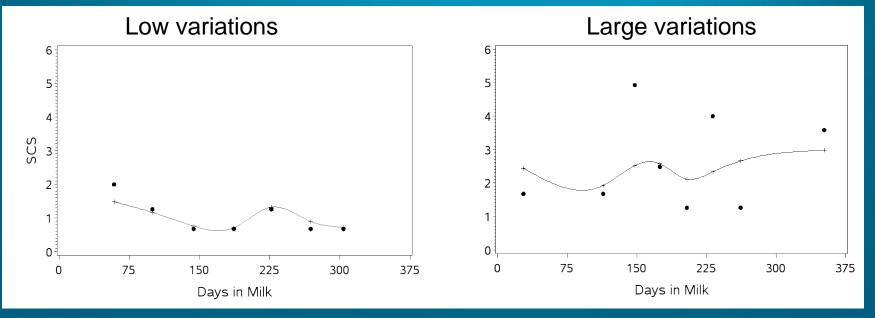
63rd Annual Meeting of EAAP 2012 Bratislava, Slovak Republic, August 27-31

Genetic variance in environmental sensitivity for milk and milk quality in Walloon Holstein cattle

J. Vandenplas^{1,2}, C. Bastin¹, N. Gengler¹ and H. A. Mulder^{3,4}

¹University of Liege, Gembloux Agro Bio-Tech, Gembloux, Belgium ²National Fund for Scientific Research, Brussels, Belgium ³Wageningen UR Livestock Research, Lelystad, The Netherlands ⁴Wageningen University, Wageningen, The Netherlands

www.robustmilk.eu



- Dairy cows robust to environmental changes
 - Economically desirable for some traits (e.g., increase of homogeneity of dairy products)

Dairy cows robust to environmental changes

- Economically desirable for some traits (e.g., increase of homogeneity of dairy products)
- But, variations of observations around the fitted curve during the lactation:

- Dairy cows robust to environmental changes
 - Economically desirable for some traits (e.g., increase of homogeneity of dairy products)
- Environmental factors
 - Macro-environment
 - Identifiable (e.g., temperature)
 - Micro-environment
 - Unknown

The genetic variance in micro-environmental sensitivity can be studied through genetic variance in residual variance (Hill and Mulder, 2010).

Potential interesting traits

- Milk yield
- Somatic cells score (SCS)
- Milk fatty acids (FA) composition
 - Saturated FA (SFA)
 - Cholesterol, cardiovascular diseases (Haug et al., 2007)
 - Unsaturated FA (UFA)
 - Healthier for humans (Haug et al., 2007)
 - Milk fat quality properties (Palmquist et al., 1993)
 - C18:1 *cis-9*
 - Major UFA
 - Body fat mobilization in early lactation (Barber et al., 1997; Van Haelst et al., 2008)
 - → poor fertility performances (Bastin et al., 2012)

To study genetic heterogeneity of residual variance for milk yield, SCS, SFA, UFA and C18:1 *cis-9* separately

Estimation of variance components and breeding values (EBV_v) in the residual variance part

Using a double hierarchical generalized linear model (DHGLM; Rönnegård et al.,2010)

Data

26,887 Walloon Holstein first-parity cows

- With a known sire
- 747 herds
- ≥ 5 cows / herd * test-day
- ≥ 3 records / cow
- 146,027 test-day records
 - Milk yield (kg), SCS
 - SFA (g/dL of milk), UFA (g/dL of milk), C18:1 cis-9 (g/dL of milk)
- Pedigree
 - 86,410 animals
 - ≥ 10 cows with records / sire

Mean model
y = XB + Zu + Zp + e
Fixed effects
-Herd * test-day
-Lactation stage (classes of 5 DIM)
-Gestation stage
-Age at calving * season of calving * major lactation stage (classes of 73 DIM)

• Mean model $y = X\beta + Zu - Zp e$ Random effects -Additive genetic -Permanent environmental

Random residuals

Mean model

 $y = X\beta + Zu + Zp + e$

Residual variance model

 $V(\mathbf{e}) = \exp(\mathbf{X}(\beta_v) + \mathbf{W}_v \mathbf{h}_v + \mathbf{Z}_v \mathbf{u}_v + \mathbf{Z}_v \mathbf{p}_v)$

Fixed effects

-Herd * calving year

- -Lactation stage
- -Gestation stage

-Age at calving * season of calving * major lactation stage

 Mean model $\mathbf{y} = \mathbf{X}\mathbf{\beta} + \mathbf{Z}\mathbf{u} + \mathbf{Z}\mathbf{p} + \mathbf{e}$ Residual variance model $V(\mathbf{e}) = \exp(\mathbf{X}_{v}\boldsymbol{\beta}_{v} + \mathbf{W}(\mathbf{h}_{v}) + \mathbf{Z}(\mathbf{u}_{v}) + \mathbf{Z}(\mathbf{p}_{v})$ **Random effects** -Herd * test-day -Additive genetic -Permanent environmental

Mean model

 $y = X\beta + Zu + Zp + e$

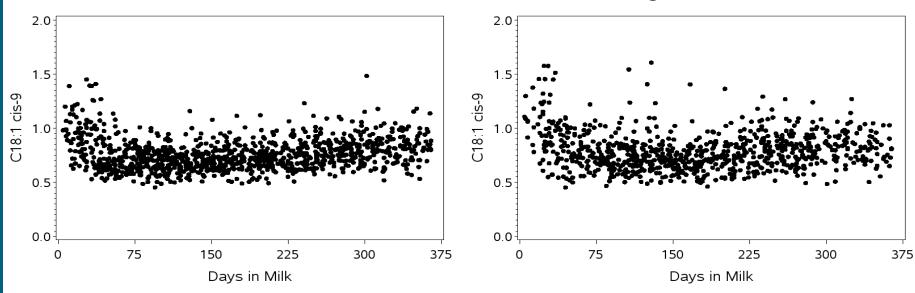
- Residual variance model $V(e) = exp(X_v\beta_v + W_vh_v + Z_vu_v + Z_vp_v)$
- Estimation of variance components and breeding values
 - DHGLM method (Rönnegård et al.,2010)
 - Iterations between the mean model and the residual variance model
 - Modified REMLF90 (Misztal, 2012)

Trait	GCV	h² _v
Milk yield	0.17	1.99*10 ⁻³
SCS	0.16	3.47*10 ⁻³
SFA	0.12	1.01*10 ⁻³
UFA	0.12	3.57*10 ⁻³
C18:1 <i>cis-9</i>	0.12	4.17*10 ⁻³

Low genetic coefficients of variation for residual variances (GCV;
 ≈ genetic SD of the residual variance model)

• In the lower range of GCV for other species (Hill and Mulder, 2010)

Presence of some genetic variance in environmental sensitivity


Trait	GCV	h² _v
Milk yield	0.17	1.99*10 ⁻³
SCS	0.16	3.47*10 ⁻³
SFA	0.12	1.01*10 ⁻³
UFA	0.12	3.57*10 ⁻³
C18:1 <i>cis-9</i>	0.12	4.17*10 ⁻³

Low heritabilities for residual variances (h²_v)
 → Lower than estimates in other species (0.02-0.05; Hill and Mulder, 2010)

Accurate EBV_v estimated from a large data set with enough information per animal (Mulder et al., 2007)

Low EBVv sire

High EBVv sire

• Low EBV_v sire: less variation in observations within its daughters group than the high EBV_v sire

	Variance	Traits				
	components	Milk yield	SCS	SFA	UFA	C18:1 cis-9
Mean	σ_{p}^{2}	1.11	0.70	0.41	0.14	0.11
model	σ_{u}^{2}	0.57	0.15	1.34	0.30	0.20
Residual	$\sigma^{2}_{h_{v}}$	0.13	0.18	0.14	0.20	0.19
variance	$\sigma^{2}_{p_{V}}$	0.53	0.95	0.42	0.33	0.30
model	σ² _{uv}	0.29*10 ⁻¹	0.25*10 ⁻¹	0.14*10 ⁻¹	0.15*10 ⁻¹	0.15*10 ⁻¹

Herd * test-day and permanent environmental effects
 Substantial contributions to heterogeneity of residual variance

→ The DHGLM method may provide interesting information for management purposes in terms of variation.

Pearson correlations between EBV and EBV_v

Milk yield	SCS	SFA	UFA	C18:1 <i>cis-</i> 9
0.47	0.27	0.28	0.24	0.22

- Positive correlations
 - Higher EBV \rightarrow higher EBV, \rightarrow \uparrow residual variance

Pearson correlations between EBV and EBV_v

Milk yield	SCS	SFA	UFA	C18:1 <i>cis-</i> 9
0.47	0.27	0.28	0.24	0.22

- Positive correlations
 - Higher EBV \rightarrow higher EBV, \rightarrow \uparrow residual variance
 - Milk yield
 - Highest correlation

Pearson correlations between EBV and EBV_v

Milk yield	SCS	SFA	UFA	C18:1 <i>cis-</i> 9
0.47	0.27	0.28	0.24	0.22

- Positive correlations
 - Higher EBV \rightarrow higher EBV, $\rightarrow \uparrow$ residual variance
 - Milk yield
 - Highest correlation
 - SCS

• Selection of lower EBV would reduce the average level of SCS but also the residual variance of SCS, both involving fewer mastitis cases.

Pearson correlations between EBV and EBV_v

Milk yield	SCS	SFA	UFA	C18:1 <i>cis-</i> 9
0.47	0.27	0.28	0.24	0.22

- Positive correlations
 - C18:1 *cis-9*

 Desirable: high contents in milk with few variation during the lactation

 But, selection of low EBV, would decrease the average content in milk of this FA.

Pearson correlations between EBV and EBV_v

Milk yield	SCS	SFA	UFA	C18:1 <i>cis-</i> 9
0.47	0.27	0.28	0.24	0.22

- Positive correlations
 - C18:1 *cis-9*

 Desirable: high contents in milk with few variation during the lactation

 But, selection of low EBV, would decrease the average content in milk of this FA.

Correlations ≠ 1.00

Selection feasible in a desired direction with proper weighting of both EBV in total merit indices

Conclusion

For all studied traits in the Walloon Holstein dairy cattle:

- Genetic and non-genetic heterogeneity of residual variance
- Genetic variance in environmental sensitivity
 - → Selection feasible to change micro-environmental sensitivity
- Substantial contributions of non-genetic effects
 - Interesting information for management purposes in terms of variation

Corresponding author's email: jvandenplas@ulg.ac.be

Study supported by:

- Public Service of Wallonia (SPW-DGARNE; project D31-1273)
- European Commission, Directorate-General for Agriculture and Rural Development, under Grant Agreement 211708 (project Robustmilk)

This study has been carried out with financial support from the Commission of the European Communities, FP7, KBBE-2007-1. It does not necessarily reflect its view and in no way anticipates the Commission's future policy in this area.

ILK= www.robustmilk.eu