Selection for feed intake in dairy cattle using genomic selection.

Roel Veerkamp, Mario Calus and Yvette de Haas RobustMilk & gDMI

LIVESTOCK RESEARCH

Animal Breeding & Genomics Centre

Introduction

Importance of feed efficiency

- Global food, forest or fuel discussions
- Environmental issues (manure & greenhouse gas)
- Feed important variable cost at farm level

 \rightarrow Selection impossible in progeny testing scheme.

"Can we beat this dilemma in the era of genomics"

(work in progress)

Animal Breeding & Genomics Centre

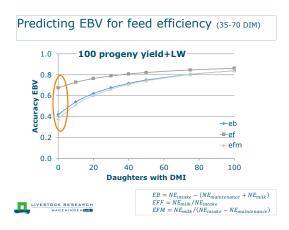
Outline Predict EBV feed efficiency from correlated traits

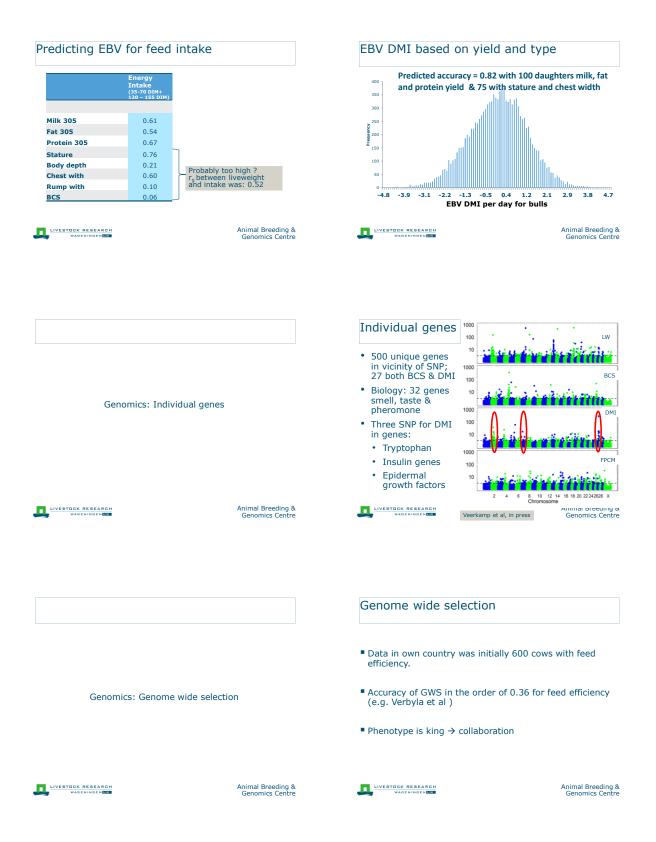
- Genomics
 - Individual genes
 - Genome wide selection
- Future perspective
 - Progeny tested bull
 - Genomically tested bull

Animal Breeding & Genomics Centre

Predict EBV from correlated traits

Animal Breeding & Genomics Centre


Predictor traits


- Data Dutch research herds
 - nearly 2000 lactations with feed intake, ration, chemical composition, liveweight ...

Can LW^{0.75} and FPCM predict EBV for feed efficiency?

Animal Breeding & Genomics Centre

Genome wide selection: sh	enome wide selection: shared data Genetic parameters (with Genomic RM			nic RM)	
Australia (DPI)			AU	UK	NL
• 843 calves with genotypes (6	24,930 SNPS)	AU	0.41		
RobustMilk (SAC & WLR)		UK	0.74 (0.34)	0.38 (0.12)	
599 Dutch cows with genotyp359 Scottish cows with genot		NL	0.36 (0.22)	0.50 (0.28)	<u>0.59</u> (0.10)
 Common 40 bulls genotyped in both data 	tasets	- Need a multitr	rait GBLUP model		
LIVESTOCK RESEARCH Wageningen De	Animal Breeding & Genomics Centre	LIVESTOCK RES		e Haas et al, submitted	Animal Breeding & Genomics Centre

Accuracy of	genomic sele	ction
	Within	Shared
AU	0.38	0.39
	(0.03)	(0.04)
UK	0.30	0.33
	(0.04)	(0.03)
NL	0.33	0.34
	(0.10)	(0.09)

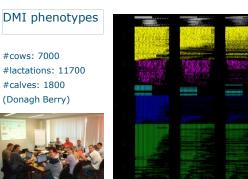
- Need a multitrait GBLUP model; otherwise might loose accuracy - Variable results in NL depending on validation set

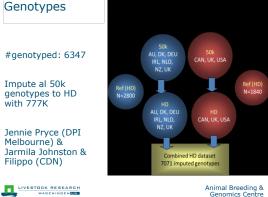
LIVESTOCK RESEARCH	
 WAGENINGENUR	

Animal Breeding & Genomics Centre De Haas et al, submitted

Global dry matter initiative: gDMI

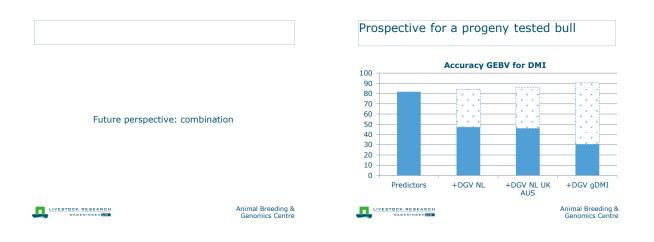
- Combine DMI phenotypes
- Common pedigree
- Combine genotypes

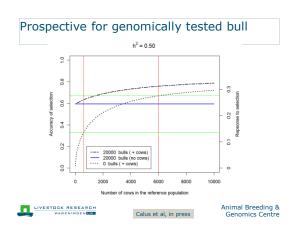



ALBERTA

- Key research questions:
 - Genomic similarity between population? • How to combine, homogenise and standardise
 - phenotypes?
 - Can we predict DGV for DMI for different partners?

Animal Breeding & Genomics Centre


R



Animal Breeding & Genomics Centre

3

Conclusions

- Selection for feed efficiency impossible a few years ago, with genomics a realistic prospect for future
 - Yield and type to make the first step
 - Genomics should identify 'net efficient cows'
- Breeding goals is more complicated
 - Energy balance; liveweight; economics fat:protein
- Phenotyping is still king; collaboration is leading

Animal Breeding & Genomics Centre

