Genetic variance in environmental sensitivity for milk and milk quality in Walloon Holstein cattle

J. Vandenplas1,2, C. Bastin1, N. Gengler1 and H. A. Mulder3,4

1University of Liege, Gembloux Agro Bio-Tech, Gembloux, Belgium
2National Fund for Scientific Research, Brussels, Belgium
3Wageningen UR Livestock Research, Lelystad, The Netherlands
4Wageningen University, Wageningen, The Netherlands

www.robustmilk.eu
Introduction

• Dairy cows robust to environmental changes
 – Economically desirable for some traits (e.g., increase of homogeneity of dairy products)
Introduction

- Dairy cows robust to environmental changes
 - Economically desirable for some traits (e.g., increase of homogeneity of dairy products)
- But, variations of observations around the fitted curve during the lactation:

![Low variations graph](image)

![Large variations graph](image)
Introduction

• Dairy cows robust to environmental changes
 – Economically desirable for some traits (e.g., increase of homogeneity of dairy products)

• Environmental factors
 – Macro-environment
 • Identifiable (e.g., temperature)
 – Micro-environment
 • Unknown

⇒ The genetic variance in micro-environmental sensitivity can be studied through genetic variance in residual variance (Hill and Mulder, 2010).
Introduction

• Potential interesting traits
 – Milk yield
 – Somatic cells score (SCS)
 – Milk fatty acids (FA) composition
 • Saturated FA (SFA)
 – Cholesterol, cardiovascular diseases (Haug et al., 2007)
 • Unsaturated FA (UFA)
 – Healthier for humans (Haug et al., 2007)
 – Milk fat quality properties (Palmquist et al., 1993)
 • C18:1 cis-9
 – Major UFA
 – Body fat mobilization in early lactation (Barber et al., 1997; Van Haelst et al., 2008)
 ➔ poor fertility performances (Bastin et al., 2012)
Aim

To study genetic heterogeneity of residual variance for milk yield, SCS, SFA, UFA and C18:1 cis-9 separately

- Estimation of variance components and breeding values (EBV) in the residual variance part

- Using a double hierarchical generalized linear model (DHGLM; Rönnegård et al., 2010)
Data

• 26,887 Walloon Holstein first-parity cows
 – With a known sire
 – 747 herds
 – ≥ 5 cows / herd * test-day
 – ≥ 3 records / cow
 – 146,027 test-day records
 • Milk yield (kg), SCS
 • SFA (g/dL of milk), UFA (g/dL of milk), C18:1 \textit{cis}-9 (g/dL of milk)

• Pedigree
 – 86,410 animals
 – ≥ 10 cows with records / sire
Model

• Mean model

\[y = X\beta + Zu + Zp + e \]

Fixed effects
- Herd * test-day
- Lactation stage (classes of 5 DIM)
- Gestation stage
- Age at calving * season of calving * major lactation stage (classes of 73 DIM)
Model

• Mean model

\[y = X\beta + Zu + Zp + e \]

Random effects
- Additive genetic
- Permanent environmental

Random residuals
Model

- Mean model
 \[y = X\beta + Zu + Zp + e \]

- Residual variance model
 \[V(e) = \exp(X_v\beta_v + W_v h_v + Z_v u_v + Z_v p_v) \]

Fixed effects
- Herd * calving year
- Lactation stage
- Gestation stage
- Age at calving * season of calving * major lactation stage
Model

• Mean model

\[y = X\beta + Zu + Zp + e \]

• Residual variance model

\[V(e) = \exp(X_v\beta_v + W_h h_v + Z_u u_v + Z_p p_v) \]

Random effects
- Herd * test-day
- Additive genetic
- Permanent environmental
Model

- Mean model
 \[y = X\beta + Zu + Zp + e \]

- Residual variance model
 \[V(e) = \exp(X_v\beta_v + W_vh_v + Zvu_v + Zvp_v) \]

- Estimation of variance components and breeding values
 - DHGLM method (Rönnegård et al., 2010)
 - Iterations between the mean model and the residual variance model
 - Modified REMLF90 (Misztal, 2012)
Results

<table>
<thead>
<tr>
<th>Trait</th>
<th>GCV</th>
<th>h^2_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk yield</td>
<td>0.17</td>
<td>1.99*10^{-3}</td>
</tr>
<tr>
<td>SCS</td>
<td>0.16</td>
<td>3.47*10^{-3}</td>
</tr>
<tr>
<td>SFA</td>
<td>0.12</td>
<td>1.01*10^{-3}</td>
</tr>
<tr>
<td>UFA</td>
<td>0.12</td>
<td>3.57*10^{-3}</td>
</tr>
<tr>
<td>C18:1 cis-9</td>
<td>0.12</td>
<td>4.17*10^{-3}</td>
</tr>
</tbody>
</table>

- Low genetic coefficients of variation for residual variances (GCV; \approx genetic SD of the residual variance model)

- In the lower range of GCV for other species (Hill and Mulder, 2010)

→ Presence of some genetic variance in environmental sensitivity
Results

<table>
<thead>
<tr>
<th>Trait</th>
<th>GCV</th>
<th>h^2_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk yield</td>
<td>0.17</td>
<td>1.99*10^{-3}</td>
</tr>
<tr>
<td>SCS</td>
<td>0.16</td>
<td>3.47*10^{-3}</td>
</tr>
<tr>
<td>SFA</td>
<td>0.12</td>
<td>1.01*10^{-3}</td>
</tr>
<tr>
<td>UFA</td>
<td>0.12</td>
<td>3.57*10^{-3}</td>
</tr>
<tr>
<td>C18:1 cis-9</td>
<td>0.12</td>
<td>4.17*10^{-3}</td>
</tr>
</tbody>
</table>

- **Low heritabilities for residual variances** (h^2_v)

 Lower than estimates in other species (0.02-0.05; Hill and Mulder, 2010)

- **Accurate EBV**$_v$ **estimated from a large data set** with enough information per animal (Mulder et al., 2007)
• Low EBV_v sire: **less variation in observations** within its daughters group than the high EBV_v sire
Results

<table>
<thead>
<tr>
<th>Variance components</th>
<th>Milk yield</th>
<th>SCS</th>
<th>SFA</th>
<th>UFA</th>
<th>C18:1 cis-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean model</td>
<td>σ²_p</td>
<td>1.11</td>
<td>0.70</td>
<td>0.41</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>σ²_u</td>
<td>0.57</td>
<td>0.15</td>
<td>1.34</td>
<td>0.30</td>
</tr>
<tr>
<td>Residual variance</td>
<td>σ²_h_v</td>
<td>0.13</td>
<td>0.18</td>
<td>0.14</td>
<td>0.20</td>
</tr>
<tr>
<td>model</td>
<td>σ²_p_v</td>
<td>0.53</td>
<td>0.95</td>
<td>0.42</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td>σ²_u_v</td>
<td>0.29*10⁻¹</td>
<td>0.25*10⁻¹</td>
<td>0.14*10⁻¹</td>
<td>0.15*10⁻¹</td>
</tr>
</tbody>
</table>

- Herd * test-day and permanent environmental effects
 ➔ **Substantial contributions** to heterogeneity of residual variance

 ➔ The DHGLM method may **provide interesting information** for **management purposes** in terms of variation.
Results

Pearson correlations between EBV and EBV_v

<table>
<thead>
<tr>
<th></th>
<th>Milk yield</th>
<th>SCS</th>
<th>SFA</th>
<th>UFA</th>
<th>C18:1 cis-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.47</td>
<td>0.27</td>
<td>0.28</td>
<td>0.24</td>
<td>0.22</td>
<td></td>
</tr>
</tbody>
</table>

• Positive correlations
 • Higher EBV \rightarrow higher EBV_v \rightarrow ↑ residual variance
Results

Pearson correlations between EBV and EBV_v

<table>
<thead>
<tr>
<th></th>
<th>SCS</th>
<th>SFA</th>
<th>UFA</th>
<th>C18:1 cis-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk yield</td>
<td>0.47</td>
<td>0.27</td>
<td>0.28</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.22</td>
</tr>
</tbody>
</table>

• Positive correlations
 • Higher EBV \Rightarrow higher EBV_v \Rightarrow ↑ residual variance

• Milk yield
 • Highest correlation
Results

Pearson correlations between EBV and EBV_v

<table>
<thead>
<tr>
<th></th>
<th>Milk yield</th>
<th>SCS</th>
<th>SFA</th>
<th>UFA</th>
<th>C18:1 cis-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk yield</td>
<td>0.47</td>
<td>0.27</td>
<td>0.28</td>
<td>0.24</td>
<td>0.22</td>
</tr>
</tbody>
</table>

- **Positive correlations**
 - Higher EBV \Rightarrow higher EBV_v \Rightarrow ↑ residual variance

- **Milk yield**
 - Highest correlation

- **SCS**
 - Selection of lower EBV would reduce the average level of SCS but also the residual variance of SCS, both involving fewer mastitis cases.
Results

Pearson correlations between EBV and EBV

<table>
<thead>
<tr>
<th>Milk yield</th>
<th>SCS</th>
<th>SFA</th>
<th>UFA</th>
<th>C18:1 cis-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.47</td>
<td>0.27</td>
<td>0.28</td>
<td>0.24</td>
<td>0.22</td>
</tr>
</tbody>
</table>

• Positive correlations
 • C18:1 cis-9
 • Desirable: high contents in milk with few variation during the lactation
 • But, selection of low EBV would decrease the average content in milk of this FA.
Results

Pearson correlations between EBV and EBV\textsubscript{v}

<table>
<thead>
<tr>
<th></th>
<th>Milk yield</th>
<th>SCS</th>
<th>SFA</th>
<th>UFA</th>
<th>C18:1 \textit{cis}-9</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.47</td>
<td>0.27</td>
<td>0.28</td>
<td>0.24</td>
<td>0.22</td>
</tr>
</tbody>
</table>

• Positive correlations
 • C18:1 \textit{cis}-9
 • \textbf{Desirable}: high contents in milk with few variation during the lactation
 • But, selection of low EBV\textsubscript{v} would decrease the average content in milk of this FA.

• Correlations ≠ 1.00
 ➡️ \textbf{Selection feasible} in a desired direction with proper weighting of both EBV in total merit indices
Conclusion

For all studied traits in the Walloon Holstein dairy cattle:

– Genetic and non-genetic heterogeneity of residual variance

– Genetic variance in environmental sensitivity
 ➔ Selection feasible to change micro-environmental sensitivity

– Substantial contributions of non-genetic effects
 ➔ Interesting information for management purposes in terms of variation
Study supported by:

• Public Service of Wallonia (SPW-DGARNE; project D31-1273)

• European Commission, Directorate-General for Agriculture and Rural Development, under Grant Agreement 211708 (project Robustmilk)

This study has been carried out with financial support from the Commission of the European Communities, FP7, KBBE-2007-1. It does not necessarily reflect its view and in no way anticipates the Commission’s future policy in this area.

www.robustmilk.eu